IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v71y2023i2p255-272.html
   My bibliography  Save this article

Determining optimal forest rotation ages and carbon offset credits: Accounting for post‐harvest carbon storehouses

Author

Listed:
  • G. Cornelis van Kooten

Abstract

Sequestering carbon in forest ecosystems is important for mitigating climate change. A major policy concern is whether forests should be left unharvested to avoid carbon dioxide (CO2) emissions and store carbon, or harvested to take advantage of potential carbon storage in post‐harvest wood product sinks and removal of CO2 from the atmosphere by new growth. The issue is addressed in this paper by examining carbon rotation ages that consider commercial timber as well as carbon values. A discrete‐time optimal rotation age model is developed that employs data on carbon fluxes stored in both living and dead biomass as opposed to carbon as a function of timber growth. Carbon is allocated to several ecosystem and post‐harvest product pools that decay over time at different rates. In addition, the timing of carbon fluxes is taken into account by weighting future carbon fluxes as less important than current ones. Using simple formulae for determining optimal rotation ages, we find that: (1) Reducing the price of timber while increasing the price of carbon will increase rotation age, perhaps to infinity (stand remains unharvested). (2) An increase in the rate used to discount physical carbon generally reduces the rotation age, but not in all cases. (3) As a corollary, an increase in the price of carbon increases or reduces rotation age depending on the weight chosen to discount future carbon fluxes. (4) Site characteristics and the mix of species on the site affect conclusions (2) and (3). (5) A large variety of carbon offset credits from forestry activities could be justified, which makes it difficult to accept any. La séquestration du carbone dans les écosystèmes forestiers est importante pour atténuer les changements climatiques. Une préoccupation politique majeure est de savoir si les forêts devraient être laissées en friche pour éviter les émissions de CO2 et stocker le carbone, ou exploitées pour tirer parti du potentiel de stockage du carbone dans les puits de produits ligneux post‐récolte et de l’élimination du CO2 de l'atmosphère par une nouvelle croissance. La question est abordée dans le présent document en examinant les âges de rotation du carbone qui tiennent compte du bois commercial ainsi que des valeurs du carbone. Un modèle d’âge de rotation optimal en temps discret est développé qui utilise les données sur les flux de carbone stockés dans la biomasse vivante et morte par opposition au carbone en fonction de la croissance du bois. Le carbone est attribué à plusieurs bassins de produits écosystémiques et post‐récolte qui se décomposent à différents taux au fil du temps. En outre, le calendrier des flux de carbone est pris en compte en pondérant les flux de carbone futurs comme moins importants que les flux actuels. En utilisant des formules simples pour déterminer les âges de rotation optimaux, nous constatons que : (1) Réduire le prix du bois tout en augmentant le prix du carbone augmentera l’âge de rotation, peut‐être à l'infini (le peuplement reste non récolté). (2) Une augmentation du taux d'actualisation du carbone physique réduit généralement l’âge de rotation, mais pas dans tous les cas. (3) Comme corollaire, une augmentation du prix du carbone augmente ou réduit l’âge de rotation selon le poids choisi pour réduire les flux de carbone futurs. (4) Les caractéristiques du site et le mélange des espèces présentes sur le site influent sur les conclusions (2) et (3). (5) Une grande variété de crédits compensatoires de carbone provenant des activités forestières pourrait être justifiée, ce qui rend difficile d'en accepter.

Suggested Citation

  • G. Cornelis van Kooten, 2023. "Determining optimal forest rotation ages and carbon offset credits: Accounting for post‐harvest carbon storehouses," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(2), pages 255-272, June.
  • Handle: RePEc:bla:canjag:v:71:y:2023:i:2:p:255-272
    DOI: 10.1111/cjag.12333
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/cjag.12333
    Download Restriction: no

    File URL: https://libkey.io/10.1111/cjag.12333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    2. Sandmo, Agnar, 1998. "Redistribution and the marginal cost of public funds," Journal of Public Economics, Elsevier, vol. 70(3), pages 365-382, December.
    3. Bev Dahlby, 2008. "The Marginal Cost of Public Funds: Theory and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262042509, December.
    4. van Kooten, G. Cornelis, 2017. "Forest carbon offsets and carbon emissions trading: Problems of contracting," Forest Policy and Economics, Elsevier, vol. 75(C), pages 83-88.
    5. Johnston, Craig M.T. & Cornelis van Kooten, G., 2015. "Back to the past: Burning wood to save the globe," Ecological Economics, Elsevier, vol. 120(C), pages 185-193.
    6. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    7. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    8. van Kooten, G. Cornelis, 2018. "The Challenge of Mitigating Climate Change through Forestry Activities: What Are the Rules of the Game?," Ecological Economics, Elsevier, vol. 146(C), pages 35-43.
    9. Thompson, Matthew P. & Adams, Darius & Sessions, John, 2009. "Radiative forcing and the optimal rotation age," Ecological Economics, Elsevier, vol. 68(10), pages 2713-2720, August.
    10. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    11. Tommi Ekholm, 2015. "Optimal forest rotation age under efficient climate change mitigation," Papers 1505.05669, arXiv.org, revised Oct 2015.
    12. Brent Sohngen & Sandra Brown, 2008. "Extending timber rotations: carbon and cost implications," Climate Policy, Taylor & Francis Journals, vol. 8(5), pages 435-451, September.
    13. Giacomo Grassi & Jo House & Frank Dentener & Sandro Federici & Michel den Elzen & Jim Penman, 2017. "The key role of forests in meeting climate targets requires science for credible mitigation," Nature Climate Change, Nature, vol. 7(3), pages 220-226, March.
    14. Roger Sedjo & Brent Sohngen, 2012. "Carbon Sequestration in Forests and Soils," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 127-144, August.
    15. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Cornelis van Kooten & Rebecca Zanello, 2023. "Carbon offsets and agriculture: Options, obstacles, and opinions," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(3-4), pages 375-391, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kooten, G. Cornelis Van, 2022. "The Impact of Carbon on Optimal Forest Rotation Ages: An Application to Coastal Forests in British Columbia," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322612, Agricultural and Applied Economics Association.
    2. Yu, Zhihan & Ning, Zhuo & Chang, Wei-Yew & Chang, Sun Joseph & Yang, Hongqiang, 2023. "Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences," Forest Policy and Economics, Elsevier, vol. 151(C).
    3. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    4. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    5. Köthke, Margret & Dieter, Matthias, 2010. "Effects of carbon sequestration rewards on forest management--An empirical application of adjusted Faustmann Formulae," Forest Policy and Economics, Elsevier, vol. 12(8), pages 589-597, October.
    6. Rørstad, Per Kristian, 2022. "Payment for CO2 sequestration affects the Faustmann rotation period in Norway more than albedo payment does," Ecological Economics, Elsevier, vol. 199(C).
    7. Jussi Lintunen & Aapo Rautiainen & Jussi Uusivuori, 2022. "Which Is more Important, Carbon or Albedo? Optimizing Harvest Rotations for Timber and Climate Benefits in a Changing Climate," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 134-160, January.
    8. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    9. Daigneault, Adam & Johnston, Craig & Korosuo, Anu & Baker, Justin S. & Forsell, Nicklas & Prestemon, Jeffrey P. & Abt, Robert C., 2019. "Developing Detailed Shared Socioeconomic Pathway (SSP) Narratives for the Global Forest Sector," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 7-45, August.
    10. Wise, Russell M. & Cacho, Oscar J., 2008. "Bioeconomic meta-modelling of Indonesian agroforests as carbon sinks," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6772, Australian Agricultural and Resource Economics Society.
    11. Caparros, Alejandro & Cerda, Emilio & Ovando, P. & Campos, Pablo, 2007. "Carbon Sequestration with Reforestations and Biodiversity-Scenic Values," Climate Change Modelling and Policy Working Papers 9323, Fondazione Eni Enrico Mattei (FEEM).
    12. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    13. Creedy, John & Wurzbacher, Anke D., 2001. "The economic value of a forested catchment with timber, water and carbon sequestration benefits," Ecological Economics, Elsevier, vol. 38(1), pages 71-83, July.
    14. L. Gharis & J. Roise & J. McCarter, 2015. "A compromise programming model for developing the cost of including carbon pools and flux into forest management," Annals of Operations Research, Springer, vol. 232(1), pages 115-133, September.
    15. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).
    16. Lintunen, Jussi & Rautiainen, Aapo, 2021. "On physical and social-cost-based CO2 equivalents for transient albedo-induced forcing," Ecological Economics, Elsevier, vol. 190(C).
    17. Pohjola, Johanna & Laturi, Jani & Lintunen, Jussi & Uusivuori, Jussi, 2018. "Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners," Journal of Forest Economics, Elsevier, vol. 32(C), pages 94-105.
    18. James E. Anderson & Will Martin, 2011. "Costs of Taxation and Benefits of Public Goods with Multiple Taxes and Goods," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 13(2), pages 289-309, April.
    19. Parkatti, Vesa-Pekka & Tahvonen, Olli, 2021. "Economics of multifunctional forestry in the Sámi people homeland region," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    20. Bas Jacobs, 2010. "The Marginal Cost of Public Funds is One," CESifo Working Paper Series 3250, CESifo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:71:y:2023:i:2:p:255-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.