Advanced Search
MyIDEAS: Login

The economic value of a forested catchment with timber, water and carbon sequestration benefits

Contents:

Author Info

  • Creedy, John
  • Wurzbacher, Anke D.

Abstract

This paper examines the optimal management strategy for a forested catchment that yields timber, water and carbon sequestration benefits. The Faustmann multiple rotation model is extended to allow for the maximisation of the net present value of these timber and non-timber benefits. The model is applied to the Thomson Catchment in Central Gippsland, Victoria. Carbon sequestration benefits are modelled via total stand biomass accumulation. The cost of carbon release back into the atmosphere upon logging is estimated as a function of rotation age using an adjusted pulpwood/sawlog ratio. The allowance for both non-timber benefits is found to lengthen the optimal rotation, in a large range of cases to infinity.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VDY-43B8J4C-6/2/3f1ea4a82fdbfadea20ac63dd8995336
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Ecological Economics.

Volume (Year): 38 (2001)
Issue (Month): 1 (July)
Pages: 71-83

as in new window
Handle: RePEc:eee:ecolec:v:38:y:2001:i:1:p:71-83

Contact details of provider:
Web page: http://www.elsevier.com/locate/ecolecon

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. D Demeritt & D Rothman, 1999. "Figuring the costs of climate change: an assessment and critique," Environment and Planning A, Pion Ltd, London, vol. 31(3), pages 389-408, March.
  2. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
  3. Kadekodi, Gopal K. & Ravindranath, N. H., 1997. "Macro-economic analysis of forestry options on carbon sequestration in India," Ecological Economics, Elsevier, vol. 23(3), pages 201-223, December.
  4. S Fankhauser & R S J Tol, 1999. "Figuring the costs of climate change: a reply," Environment and Planning A, Pion Ltd, London, vol. 31(3), pages 409-411, March.
  5. S. Rama Chandra Reddy & Colin Price, 1999. "Carbon Sequestration and Conservation of Tropical Forests Under Uncertainty," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(1), pages 17-35.
  6. Roger Sedjo & Joe Wisniewski & Alaric Sample & John Kinsman, 1995. "The economics of managing carbon via forestry: Assessment of existing studies," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 6(2), pages 139-165, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Benitez, Pablo C. & Obersteiner, Michael, 2006. "Site identification for carbon sequestration in Latin America: A grid-based economic approach," Forest Policy and Economics, Elsevier, vol. 8(6), pages 636-651, August.
  2. Renan Ulrich Goetz & Natali Hritonenko & Ruben Mur & Àngels Xabadia & Yuri Yatsenko, 2008. "Climate Change and the Cost of Carbon Sequestration: The Case of Forest Management," Working Papers 329, Barcelona Graduate School of Economics.
  3. Price, Colin & Willis, Rob, 2011. "The multiple effects of carbon values on optimal rotation," Journal of Forest Economics, Elsevier, vol. 17(3), pages 298-306, August.
  4. Pajot, Guillaume, 2011. "Rewarding carbon sequestration in South-Western French forests: A costly operation?," Journal of Forest Economics, Elsevier, vol. 17(4), pages 363-377.
  5. McKenney, Daniel W. & Yemshanov, Denys & Fox, Glenn & Ramlal, Elizabeth, 2004. "Cost estimates for carbon sequestration from fast growing poplar plantations in Canada," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 345-358, June.
  6. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
  7. McCarney, Geoffrey R. & Armstrong, Glen W. & Adamowicz, Wiktor L., 2006. "Implications Of A Market For Carbon On Timber And Non-Timber Values In An Uncertain World," Annual Meeting, May 25-28, 2006, Montreal, Quebec 34175, Canadian Agricultural Economics Society.
  8. Guitart, A. Bussoni & Rodriguez, L.C. Estraviz, 2010. "Private valuation of carbon sequestration in forest plantations," Ecological Economics, Elsevier, vol. 69(3), pages 451-458, January.
  9. Chisholm, Ryan A., 2010. "Trade-offs between ecosystem services: Water and carbon in a biodiversity hotspot," Ecological Economics, Elsevier, vol. 69(10), pages 1973-1987, August.
  10. Spring, Daniel & Kennedy, John O.S. & Mac Nally, Ralph, 2005. "Optimal management of a flammable forest providing timber and carbon sequestration benefits: an Australian case study," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(3), September.
  11. Juutinen, Artti, 2008. "Old-growth boreal forests: Worth protecting for biodiversity?," Journal of Forest Economics, Elsevier, vol. 14(4), pages 242-267, November.
  12. Daniel Spring & John Kennedy & Ralph Mac Nally, 2005. "Optimal management of a flammable forest providing timber and carbon sequestration benefits: an Australian case study ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(3), pages 303-320, 09.
  13. Venn, Tyron J., 2005. "Financial and economic performance of long-rotation hardwood plantation investments in Queensland, Australia," Forest Policy and Economics, Elsevier, vol. 7(3), pages 437-454, March.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:38:y:2001:i:1:p:71-83. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.