IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v50y2019i1p15-26.html
   My bibliography  Save this article

The impacts of multiperil crop insurance on Indonesian rice farmers and production

Author

Listed:
  • Zaura Fadhliani
  • Jeff Luckstead
  • Eric J. Wailes

Abstract

This article analyzes the effect of multiperil crop insurance policy for risk‐averse Indonesian rice farmers located in Tuban and Gresik Regencies of the East Java Province. Based on the model, comparative static analysis of a change in policy variables (coverage levels and premium subsidies) on input use through the coupling, wealth, and insurance effects are presented. The comparative static results are largely ambiguous and left as empirical questions. Consequently, the model is numerically simulated to quantify the effects of different coverage levels and subsidy rates on input use, expected net insurance payments, and certainty equivalents. The empirical analysis shows that MPCI crop insurance results in a decline in expected yield for coverage levels above about 82.5% for both regencies. Furthermore, higher subsidy rates amplify the reduction in input use and yield. Therefore, incomplete coverage with relatively low premium subsidies is the best policy to minimize the impact on input use and yield. However, from the farmers’ perspective, the optimal policy combination results from the highest coverage level and subsidy, which offer the largest expected net insurance payments and certainty equivalent.

Suggested Citation

  • Zaura Fadhliani & Jeff Luckstead & Eric J. Wailes, 2019. "The impacts of multiperil crop insurance on Indonesian rice farmers and production," Agricultural Economics, International Association of Agricultural Economists, vol. 50(1), pages 15-26, January.
  • Handle: RePEc:bla:agecon:v:50:y:2019:i:1:p:15-26
    DOI: 10.1111/agec.12462
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/agec.12462
    Download Restriction: no

    File URL: https://libkey.io/10.1111/agec.12462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Atanu Saha & C. Richard Shumway & Hovav Talpaz, 1994. "Joint Estimation of Risk Preference Structure and Technology Using Expo-Power Utility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(2), pages 173-184.
    2. Richard E. Just & Quinn Weninger, 1999. "Are Crop Yields Normally Distributed?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(2), pages 287-304.
    3. Sebastain N. Awondo & Octavio A. Ramirez & Gregory J. Colson & Esendugue G. Fonsah & Genti Kostandini, 2017. "Self†protection from weather risk using improved maize varieties or off†farm income and the propensity for insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 48(1), pages 61-76, January.
    4. Robert Finger & Niklaus Lehmann, 2012. "The influence of direct payments on farmers’ hail insurance decisions," Agricultural Economics, International Association of Agricultural Economists, vol. 43(3), pages 343-354, May.
    5. Ruth Vargas Hill & John Hoddinott & Neha Kumar, 2013. "Adoption of weather-index insurance: learning from willingness to pay among a panel of households in rural Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 44(4-5), pages 385-398, July.
    6. James Vercammen & G. Cornelis van Kooten, 1994. "Moral Hazard Cycles in Individual-Coverage Crop Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(2), pages 250-261.
    7. Takeshi Sakurai & Thomas Reardon, 1997. "Potential Demand for Drought Insurance in Burkina Faso and Its Determinants," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(4), pages 1193-1207.
    8. Hennessy, David A., 2009. "Crop Yield Skewness and the Normal Distribution," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), pages 1-19, April.
    9. Tejeda, Hernan A. & Goodwin, Barry K., 2008. "Modeling Crop prices through a Burr distribution and Analysis of Correlation between Crop Prices and Yields using a Copula method," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6061, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Richard E. Just & Linda Calvin & John Quiggin, 1999. "Adverse Selection in Crop Insurance: Actuarial and Asymmetric Information Incentives," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(4), pages 834-849.
    11. John Felkner & Kamilya Tazhibayeva & Robert Townsend, 2009. "Impact of Climate Change on Rice Production in Thailand," American Economic Review, American Economic Association, vol. 99(2), pages 205-210, May.
    12. David A. Hennessy, 1998. "The Production Effects of Agricultural Income Support Policies under Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 46-57.
    13. Joshua D. Woodard & Bruce J. Sherrick & Gary D. Schnitkey, 2010. "Revenue Risk-Reduction Impacts of Crop Insurance in a Multicrop Framework," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 32(3), pages 472-488.
    14. H. Alan Love & Steven T. Buccola, 1991. "Joint Risk Preference-Technology Estimation with a Primal System," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 765-774.
    15. Carl H. Nelson & Edna T. Loehman, 1987. "Further Toward a Theory of Agricultural Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(3), pages 523-531.
    16. Goodwin, Barry K. & Mahul, Olivier, 2004. "Risk modeling concepts relating to the design and rating of agricultural insurance contracts," Policy Research Working Paper Series 3392, The World Bank.
    17. Xavier Giné & Robert Townsend & James Vickery, 2007. "Statistical Analysis of Rainfall Insurance Payouts in Southern India," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(5), pages 1248-1254.
    18. Octavio A. Ramirez & Carlos A. Carpio, 2012. "Premium estimation inaccuracy and the actuarial performance of the US crop insurance program," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 72(1), pages 117-133, May.
    19. Barry K. Goodwin, 1993. "An Empirical Analysis of the Demand for Multiple Peril Crop Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(2), pages 425-434.
    20. Barry K. Goodwin, 2009. "Payment Limitations and Acreage Decisions under Risk Aversion: A Simulation Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 19-41.
    21. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    22. Robert G. Chambers, 1989. "Insurability and Moral Hazard in Agricultural Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(3), pages 604-616.
    23. Edwards, William M. & Hofstrand, Donald, 2003. "Multiple Peril Crop Insurance," Staff General Research Papers Archive 10257, Iowa State University, Department of Economics.
    24. Keith H. Coble & Thomas O. Knight & Rulon D. Pope & Jeffery R. Williams, 1997. "An Expected-Indemnity Approach to the Measurement of Moral Hazard in Crop Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 216-226.
    25. Daniel Clarke & Francesca de Nicola & Ruth Vargas Hill & Neha Kumar & Parendi Mehta, 2015. "A Chat about Insurance: Experimental Results from Rural Bangladesh," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 37(3), pages 477-501.
    26. Craig McIntosh & Alexander Sarris & Fotis Papadopoulos, 2013. "Productivity, credit, risk, and the demand for weather index insurance in smallholder agriculture in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 44(4-5), pages 399-417, July.
    27. Hong Shi & Zhihui Jiang, 2016. "The efficiency of composite weather index insurance in hedging rice yield risk: evidence from China," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 319-328, May.
    28. Vincent H. Smith & Alan E. Baquet, 1996. "The Demand for Multiple Peril Crop Insurance: Evidence from Montana Wheat Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(1), pages 189-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuyun Hidayat & Sukono & Betty Subartini & Nida Khairunnisa & Aceng Sambas & Titi Purwandari, 2022. "An Estimated Analysis of Willingness to Wait Time to Pay Rice Agricultural Insurance Premiums Using Cox’s Proportional Hazards Model," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    2. Md. Monirul Islam & Shusuke Matsushita & Ryozo Noguchi & Tofael Ahamed, 2022. "A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 47-89, February.
    3. Hongli Feng & Xiaodong Du & David A. Hennessy, 2020. "Depressed demand for crop insurance contracts, and a rationale based on third generation Prospect Theory," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 59-73, January.
    4. Rocha, Jr., Adauto B. & Fulginiti, Lilyan E. & Perrin, Richard K. & Walters, Cory G., 2022. "What is the value of crop insurance for Nebraskan farmers?," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322529, Agricultural and Applied Economics Association.
    5. Naohiro Manago & Chiharu Hongo & Yuki Sofue & Gunardi Sigit & Budi Utoyo, 2020. "Transplanting Date Estimation Using Sentinel-1 Satellite Data for Paddy Rice Damage Assessment in Indonesia," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    6. Ranjan Kumar Ghosh & Shweta Gupta & Vartika Singh & Patrick S. Ward, 2021. "Demand for Crop Insurance in Developing Countries: New Evidence from India," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(1), pages 293-320, February.
    7. Baoling Zou & Zanjie Ren & Ashok K. Mishra & Stefan Hirsch, 2022. "The role of agricultural insurance in boosting agricultural output: An aggregate analysis from Chinese provinces," Agribusiness, John Wiley & Sons, Ltd., vol. 38(4), pages 923-945, October.
    8. Sarah Janzen & Nicholas Magnan & Conner Mullally & Soye Shin & I. Bailey Palmer & Judith Oduol & Karl Hughes, 2021. "Can Experiential Games and Improved Risk Coverage Raise Demand for Index Insurance? Evidence from Kenya," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 338-361, January.
    9. Jianru Fu & Ruiyuan Shen & Chao Huang, 2023. "How does price insurance alleviate the fluctuation of agricultural product market? A dynamic analysis based on cobweb model," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(5), pages 202-211.
    10. Juan He & Xiaoyong Zheng & Roderick Rejesus & Jose Yorobe, 2020. "Input use under cost‐of‐production crop insurance: Theory and evidence," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 343-357, May.
    11. Tao Li & Lihong Chen & Xiaoxu Li & Sha Li & Haibing Chen & Hao Ji, 2021. "The Impact of Cost-of-Production Insurance on Input Expense of Fruit Growing in Ecologically Vulnerable Areas: Evidence from Shaanxi Province of China," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    12. Shenan Wu & Barry K. Goodwin & Keith Coble, 2020. "Moral hazard and subsidized crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 131-142, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. G. Santeramo & B. K. Goodwin & F. Adinolfi & F. Capitanio, 2016. "Farmer Participation, Entry and Exit Decisions in the Italian Crop Insurance Programme," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 639-657, September.
    2. Luckstead, Jeff & Devadoss, Stephen, 2016. "Implication of 2014 Farm Policies for Wheat Production," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235362, Agricultural and Applied Economics Association.
    3. Barnett, Barry J. & Barrett, Christopher B. & Skees, Jerry R., 2008. "Poverty Traps and Index-Based Risk Transfer Products," World Development, Elsevier, vol. 36(10), pages 1766-1785, October.
    4. Makki Shiva S. & Somwaru Agapi L., 2007. "Assessing Adverse Selection in Crop Insurance Markets: An Application of Parametric and Nonparametric Methods," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(1), pages 1-22, May.
    5. Richard KOENIG & Marielle BRUNETTE, 2023. "Subjective barriers and determinants to crop insurance adoption," Working Papers of BETA 2023-25, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    6. Bontemps, Christophe & Bougherara, Douadia & Nauges, Céline, 2020. "Do Risk Preferences Really Matter? The Case of Pesticide Use in Agriculture," TSE Working Papers 20-1095, Toulouse School of Economics (TSE).
    7. Heidelbach, Olaf, 2007. "Efficiency of selected risk management instruments: An empirical analysis of risk reduction in Kazakhstani crop production," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 40, number 92323.
    8. Chen, Shu-Ling & Miranda, Mario J., 2006. "Modeling Yield Distribution In High Risk Counties: Application To Texas Upland Cotton," 2006 Annual meeting, July 23-26, Long Beach, CA 21392, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Mitchell, Paul David, 1999. "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM," ISU General Staff Papers 1999010108000013154, Iowa State University, Department of Economics.
    10. Rogna, Marco & Schamel, Günter & Weissensteiner, Alex, 2019. "Choosing Between Hail Insurance and Anti-Hail Nets: A Simple Model and a Simulation among Apples Producers in South Tyrol," 2019: Trading for Good - Agricultural Trade in the Context of Climate Change Adaptation and Mitigation... Symposium, June 23-25, 2019, Seville, Spain 312593, International Agricultural Trade Research Consortium.
    11. Myyra, Sami & Pietola, Kyosti, 2011. "Testing for Moral Hazard and Ranking Farms by Their Inclination to Collect Crop Damage Compensations," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114632, European Association of Agricultural Economists.
    12. Vedenov, Dmitry V. & Barnett, Barry J., 2004. "Efficiency of Weather Derivatives as Primary Crop Insurance Instruments," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(3), pages 1-17, December.
    13. Woodard, Joshua D. & Chiu Verteramo, Leslie & Miller, Alyssa P., 2015. "Adaptation of U.S. Agricultural Production to Drought and Climate Change," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205903, Agricultural and Applied Economics Association.
    14. Marco Rogna & Günter Schamel & Alex Weissensteiner, 2023. "Modelling the switch from hail insurance to antihail nets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(1), pages 118-136, January.
    15. Makki, Shiva S. & Somwaru, Agapi, 2002. "Asymmetric Information In Cotton Insurance Markets: Evidence From Texas," 2002 Annual meeting, July 28-31, Long Beach, CA 19827, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Enjolras, Geoffroy & Capitanio, Fabian & Adinolfi, Felice, 2012. "The Demand for Crop Insurance: Combined Approaches for France and Italy," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 13(1), pages 1-18.
    17. Bokusheva, Raushan, 2004. "Crop insurance in transition: a qualitative and quantitative assessment of insurance products," IAMO Discussion Papers 76, Leibniz Institute of Agricultural Development in Transition Economies (IAMO).
    18. Just, Richard E. & Just, David R., 2011. "Global identification of risk preferences with revealed preference data," Journal of Econometrics, Elsevier, vol. 162(1), pages 6-17, May.
    19. Chakir, Raja & Hardelin, Julien, 2014. "Crop Insurance and pesticide use in French agriculture: an empirical analysis," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    20. Agabriel, Jacques & Lherm, Michel & Mosnier, Claire & Reynaud, Arnaud & Thomas, Alban, 2009. "Estimating a Production Function under Production and Output Price Risks: An Application to Beef Cattle in France," TSE Working Papers 09-046, Toulouse School of Economics (TSE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:50:y:2019:i:1:p:15-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.