IDEAS home Printed from https://ideas.repec.org/a/aes/amfeco/v25y2023i64p849.html
   My bibliography  Save this article

Nexus between Economic Growth and CO2 Emission within the Preview of Institutional Quality: Some New Insights from

Author

Listed:
  • Mirzat Ullah

    (Ural Federal University, Yekaterinburg, Russia)

  • Hafiz M. Sohail

    (South China Normal University, Guangzhou, China)

  • Muhammad Asif Khan

    (University of Kotly, Jammu and Kshmir, Pakistan)

  • Hassan Zada

    (Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan)

  • Maria Kovacova

    (University of Zilina, Slovak Republic)

  • Judit Olah

    (University of Zilina, Slovak Republic)

Abstract

The destructive role of institutional quality such as corruption has been considered an important factor for economic growth, particularly in the European Union, where such practices dealt with zero tolerance. Environmental degradation such as massive carbon emissions is stressing the global ecosystem, which has become a solemn issue for environmental policy makers. This research examines the institutional role in controlling corruption within the preview of CO2 emissions-economic growth nexus for the European Union. The study evaluates the moderating impact of corruption on the relationship between CO2 emissions and economic growth for the 19 Euro countries over the period 1984-2021, within the context of Auto Regressive Distributed Lag (ARDL) estimation. Empirical results infer that the moderating role of corruption is crucial in measuring the nexus between economic growth and CO2 emissions due to better institutional quality of the European region. Furthermore, the results confirm that control over corruption plays a special role in the reduction of CO2 emissions. Furthermore, the study found a significant positive impact of renewable energy production and a negative impact of gross fixed capital formation over controlling CO2 emission in the long and short run. Furthermore, the Kernel-based Least Squares (KRLS) approach affirms that regressors can bring a variation of 0.984% in the CO2 emission. The novel finding of the study makes an advance in the current literature; we provide real-time examinations of growth and emission for the European Union. The findings are beneficial to environmental economics concerns in designing the environmental policy to seek control over pollution and preserve the natural environment for the European Union. It is also recommended to use renewable wind and solar energy sources to sustain a healthy environment.

Suggested Citation

  • Mirzat Ullah & Hafiz M. Sohail & Muhammad Asif Khan & Hassan Zada & Maria Kovacova & Judit Olah, 2023. "Nexus between Economic Growth and CO2 Emission within the Preview of Institutional Quality: Some New Insights from," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 849-849, August.
  • Handle: RePEc:aes:amfeco:v:25:y:2023:i:64:p:849
    as

    Download full text from publisher

    File URL: http://www.amfiteatrueconomic.ro/temp/Article_3238.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhattacharya, Mita & Awaworyi Churchill, Sefa & Paramati, Sudharshan Reddy, 2017. "The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions," Renewable Energy, Elsevier, vol. 111(C), pages 157-167.
    2. Chen, Yulong & Wang, Zheng & Zhong, Zhangqi, 2019. "CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China," Renewable Energy, Elsevier, vol. 131(C), pages 208-216.
    3. Fredriksson, Per G. & Vollebergh, Herman R. J. & Dijkgraaf, Elbert, 2004. "Corruption and energy efficiency in OECD countries: theory and evidence," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 207-231, March.
    4. Sekrafi Habib & Snoussi Abdelmonen & Mili Khaled, 2020. "The Effect of Corruption on the Environmental Quality in African Countries: a Panel Quantile Regression Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(2), pages 788-804, June.
    5. Wang, Zhaohua & Danish, & Zhang, Bin & Wang, Bo, 2018. "The moderating role of corruption between economic growth and CO2 emissions: Evidence from BRICS economies," Energy, Elsevier, vol. 148(C), pages 506-513.
    6. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "International trade, FDI (foreign direct investment) and embodied CO2 emissions: A case study of Chinas industrial sectors," China Economic Review, Elsevier, vol. 28(C), pages 123-134.
    7. Khezri, Mohsen & Karimi, Mohammad Sharif & Khan, Y.A. & Abbas, S.Z., 2021. "The spillover of financial development on CO2 emission: A spatial econometric analysis of Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. You, Wanhai & Zhang, Yue & Lee, Chien-Chiang, 2022. "The dynamic impact of economic growth and economic complexity on CO2 emissions: An advanced panel data estimation," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 112-128.
    9. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    10. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    11. Judit Oláh & József Popp & Szabolcs Duleba & Anna Kiss & Zoltán Lakner, 2021. "Positioning Bio-Based Energy Systems in a Hypercomplex Decision Space—A Case Study," Energies, MDPI, vol. 14(14), pages 1-23, July.
    12. Cadoret, Isabelle & Padovano, Fabio, 2016. "The political drivers of renewable energies policies," Energy Economics, Elsevier, vol. 56(C), pages 261-269.
    13. Mostafaeipour, Ali & Bidokhti, Abbas & Fakhrzad, Mohammad-Bagher & Sadegheih, Ahmad & Zare Mehrjerdi, Yahia, 2022. "A new model for the use of renewable electricity to reduce carbon dioxide emissions," Energy, Elsevier, vol. 238(PA).
    14. Muhammad Haseeb & Muhammad Azam, 2021. "Dynamic nexus among tourism, corruption, democracy and environmental degradation: a panel data investigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5557-5575, April.
    15. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    16. Paramati, Sudharshan Reddy & Mo, Di & Gupta, Rakesh, 2017. "The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries," Energy Economics, Elsevier, vol. 66(C), pages 360-371.
    17. Yurtkuran, Suleyman, 2021. "The effect of agriculture, renewable energy production, and globalization on CO2 emissions in Turkey: A bootstrap ARDL approach," Renewable Energy, Elsevier, vol. 171(C), pages 1236-1245.
    18. Shahbaz, Muhammad & Sharma, Rajesh & Sinha, Avik & Jiao, Zhilun, 2021. "Analyzing nonlinear impact of economic growth drivers on CO2 emissions: Designing an SDG framework for India," Energy Policy, Elsevier, vol. 148(PB).
    19. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    20. Sinha, Avik & Gupta, Monika & Shahbaz, Muhammad & Sengupta, Tuhin, 2019. "Impact of Corruption in Public Sector on Environmental Quality: Implications for Sustainability in BRICS and Next 11 Countries," MPRA Paper 94357, University Library of Munich, Germany, revised 05 Jun 2019.
    21. Jiang, Qingquan & Khattak, Shoukat Iqbal & Rahman, Zia Ur, 2021. "Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danish & Recep Ulucak, 2020. "The pathway toward pollution mitigation: Does institutional quality make a difference?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3571-3583, December.
    2. Madhu Sehrawat & Sanjay Kumar Singh, 2021. "Do Corruption and Income Inequality Play Spoilsport in The Energy Efficiency-Growth Relationship in BRICS Countries?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 727-746, December.
    3. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    4. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    5. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    6. Sun, Huaping & Samuel, Clottey Attuquaye & Kofi Amissah, Joshua Clifford & Taghizadeh-Hesary, Farhad & Mensah, Isaac Adjei, 2020. "Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries," Energy, Elsevier, vol. 212(C).
    7. Syed Asif Ali Naqvi & Bilal Hussain & Ashfaq Ahmad Shah & Muhammad Atiq Ur Rehman Tariq & Muhammad Usman, 2022. "Influence of Economic Growth, Energy Production, and Subcomponents on the Environment: A Regional Level Analytical Modeling," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    8. Hu, Guoheng & Can, Muhlis & Paramati, Sudharshan Reddy & Doğan, Buhari & Fang, Jianchun, 2020. "The effect of import product diversification on carbon emissions: New evidence for sustainable economic policies," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 198-210.
    9. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Sinha, Avik & Gedikli, Ayfer & Hou, Fujun, 2019. "The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries," Resources Policy, Elsevier, vol. 62(C), pages 427-436.
    10. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    11. Wang, Erhong & Gozgor, Giray & Mahalik, Mantu Kumar & Patel, Gupteswar & Hu, Guoheng, 2022. "Effects of institutional quality and political risk on the renewable energy consumption in the OECD countries," Resources Policy, Elsevier, vol. 79(C).
    12. Rajesh Sharma & Muhammad Shahbaz & Pradeep Kautish & Xuan Vinh Vo, 2023. "Diversified imports as catalysts for ecological footprint: examining the BRICS experience," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3153-3181, April.
    13. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    14. Lin, Boqiang & Okoye, Jude O., 2023. "Towards renewable energy generation and low greenhouse gas emission in high-income countries: Performance of financial development and governance," Renewable Energy, Elsevier, vol. 215(C).
    15. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.
    16. Hayat Khan & Liu Weili & Itbar Khan, 2022. "Environmental innovation, trade openness and quality institutions: an integrated investigation about environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3832-3862, March.
    17. Arminen, Heli & Menegaki, Angeliki N., 2019. "Corruption, climate and the energy-environment-growth nexus," Energy Economics, Elsevier, vol. 80(C), pages 621-634.
    18. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    19. José Alberto Fuinhas & Matheus Koengkan & Nuno Carlos Leitão & Chinazaekpere Nwani & Gizem Uzuner & Fatemeh Dehdar & Stefania Relva & Drielli Peyerl, 2021. "Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    20. Namahoro, J.P. & Nzabanita, J. & Wu, Q., 2021. "The impact of total and renewable energy consumption on economic growth in lower and middle- and upper-middle-income groups: Evidence from CS-DL and CCEMG analysis," Energy, Elsevier, vol. 237(C).

    More about this item

    Keywords

    economic growth; CO2 emission; corruption; panel data; KRLS; Euro countries;
    All these keywords.

    JEL classification:

    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • D73 - Microeconomics - - Analysis of Collective Decision-Making - - - Bureaucracy; Administrative Processes in Public Organizations; Corruption
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • N5 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:amfeco:v:25:y:2023:i:64:p:849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valentin Dumitru (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.