IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej38-6-mauritzen.html
   My bibliography  Save this article

Cost, Contractors and Scale: An Empirical Analysis of the California Solar Market

Author

Listed:
  • Johannes Mauritzen

Abstract

This paper presents an empirical analysis of the rapidly growing California rooftop solar photovoltaic market using detailed data of over 100,000 solar installations between 2007 and 2014. The rapid fall in the cost of solar panels stand central in the expansion of this market. I use a semi-parametric regression model to aid identification of cost factors by decomposing time-varying and cross-sectional components. I find that the use of Chinese manufactured panels are associated with costs that are 6% lower. Economies of scale at the local level (number of yearly installations in a zip code) and at the installation level (size of the installation) are also associated with lower costs. Higher subsidies, and higher contractor market-share are associated with higher costs. I use an exploratory analysis of the dominant contractor, SolarCity, to discuss non-cost factors in the expansion of the solar photovoltaic market.

Suggested Citation

  • Johannes Mauritzen, 2017. "Cost, Contractors and Scale: An Empirical Analysis of the California Solar Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
  • Handle: RePEc:aen:journl:ej38-6-mauritzen
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3007
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dastrup, Samuel R. & Graff Zivin, Joshua & Costa, Dora L. & Kahn, Matthew E., 2012. "Understanding the Solar Home price premium: Electricity generation and “Green” social status," European Economic Review, Elsevier, vol. 56(5), pages 961-973.
    2. Leifeld, Philip, 2013. "texreg: Conversion of Statistical Model Output in R to LATEX and HTML Tables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i08).
    3. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    4. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    5. Jonathan E. Hughes & Molly Podolefsky, 2015. "Getting Green with Solar Subsidies: Evidence from the California Solar Initiative," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 235-275.
    6. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    7. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    8. Drury, Easan & Miller, Mackay & Macal, Charles M. & Graziano, Diane J. & Heimiller, Donna & Ozik, Jonathan & Perry IV, Thomas D., 2012. "The transformation of southern California's residential photovoltaics market through third-party ownership," Energy Policy, Elsevier, vol. 42(C), pages 681-690.
    9. Adonis Yatchew, 1998. "Nonparametric Regression Techniques in Economics," Journal of Economic Literature, American Economic Association, vol. 36(2), pages 669-721, June.
    10. Candelise, Chiara & Winskel, Mark & Gross, Robert J.K., 2013. "The dynamics of solar PV costs and prices as a challenge for technology forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 96-107.
    11. George A. Akerlof, 1970. "The Market for "Lemons": Quality Uncertainty and the Market Mechanism," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 84(3), pages 488-500.
    12. Feldstein, Martin & Friedman, Bernard, 1977. "Tax subsidies, the rational demand for insurance and the health care crisis," Journal of Public Economics, Elsevier, vol. 7(2), pages 155-178, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O'Shaughnessy, Eric & Nemet, Gregory F. & Pless, Jacquelyn & Margolis, Robert, 2019. "Addressing the soft cost challenge in U.S. small-scale solar PV system pricing," Energy Policy, Elsevier, vol. 134(C).
    2. O'Shaughnessy, Eric, 2022. "How policy has shaped the emerging solar photovoltaic installation industry," Energy Policy, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crago, Christine L. & Koegler, Eric, 2018. "Drivers of growth in commercial-scale solar PV capacity," Energy Policy, Elsevier, vol. 120(C), pages 481-491.
    2. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    3. Frey, Elaine F. & Mojtahedi, Saba, 2018. "The impact of solar subsidies on California's non-residential sector," Energy Policy, Elsevier, vol. 122(C), pages 27-35.
    4. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    6. Best, Rohan, 2022. "Energy inequity variation across contexts," Applied Energy, Elsevier, vol. 309(C).
    7. Chiara Modanese & Hannu S. Laine & Toni P. Pasanen & Hele Savin & Joshua M. Pearce, 2018. "Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing," Energies, MDPI, vol. 11(9), pages 1-18, September.
    8. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    9. Best, Rohan & Chareunsy, Andrea, 2022. "The impact of income on household solar panel uptake: Exploring diverse results using Australian data," Energy Economics, Elsevier, vol. 112(C).
    10. Sommerfeldt, Nelson & Lemoine, Ida & Madani, Hatef, 2022. "Hide and seek: The supply and demand of information for household solar photovoltaic investment," Energy Policy, Elsevier, vol. 161(C).
    11. Dong, Changgui & Wiser, Ryan & Rai, Varun, 2018. "Incentive pass-through for residential solar systems in California," Energy Economics, Elsevier, vol. 72(C), pages 154-165.
    12. O'Shaughnessy, Eric, 2022. "How policy has shaped the emerging solar photovoltaic installation industry," Energy Policy, Elsevier, vol. 163(C).
    13. Graham Beattie & Yi Han & Andrea La Nauze, 2019. "Conservation Spillovers: The Effect of Rooftop Solar on Climate Change Beliefs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1425-1451, November.
    14. Jonathan E. Hughes & Molly Podolefsky, 2015. "Getting Green with Solar Subsidies: Evidence from the California Solar Initiative," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 235-275.
    15. Pedro I. Hancevic & Hector H. Sandoval, 2023. "Solar Panel Adoption in SMEs in Emerging Countries," Working Papers 222, Red Nacional de Investigadores en Economía (RedNIE).
    16. Seel, Joachim & Barbose, Galen L. & Wiser, Ryan H., 2014. "An analysis of residential PV system price differences between the United States and Germany," Energy Policy, Elsevier, vol. 69(C), pages 216-226.
    17. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    18. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    19. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    20. Abajian, Alexander & Pretnar, Nick, 2021. "An Aggregate Perspective on the Geo-spatial Distribution of Residential Solar Panels," MPRA Paper 105481, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej38-6-mauritzen. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.