IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej37-si2-praktiknjo.html
   My bibliography  Save this article

Renewable Electricity and Backup Capacities: An (Un-) Resolvable Problem?

Author

Listed:
  • Aaron Praktiknjo and Georg Erdmann

Abstract

Public support for renewables has led to an unexpected investment momentum in Germany. A consequence is a reduction in wholesale electricity prices, the so-called merit order effect of renewables. We estimate this reduction using an econometric approach and provide a quantitative overview of the financial situation of conventional generators. Our results indicate that investments in new conventional capacities are economically unviable. With the current market design, this situation is going to impact supply security, at least in the long run. A popular approach to address this issue is the introduction of additional public support for conventional power plants. However, we believe that subsidizing renewable and conventional capacities contradicts the idea of a liberal market. We present two alternatives: State control of investments in renewables through auctions (as proposed by the European Commission), and a premium paid to representatives of the demand side (such as retailers) in dependence of their shares of renewables.

Suggested Citation

  • Aaron Praktiknjo and Georg Erdmann, 2016. "Renewable Electricity and Backup Capacities: An (Un-) Resolvable Problem?," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
  • Handle: RePEc:aen:journl:ej37-si2-praktiknjo
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2732
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
    2. Weigt, Hannes, 2009. "Germany's wind energy: The potential for fossil capacity replacement and cost saving," Applied Energy, Elsevier, vol. 86(10), pages 1857-1863, October.
    3. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    4. Luiz T. A. Maurer & Luiz A. Barroso, 2011. "Electricity Auctions : An Overview of Efficient Practices," World Bank Publications - Books, The World Bank Group, number 2346, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilmore, J. & Nolan, T. & Simshauser, P., 2022. "The Levelised Cost of Frequency Control Ancillary Services in Australia’s National Electricity Market," Cambridge Working Papers in Economics 2203, Faculty of Economics, University of Cambridge.
    2. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    3. Bucksteeg, Michael, 2019. "Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1476-1491.
    4. Carol Inoue Dick & Aaron Praktiknjo, 2019. "Blockchain Technology and Electricity Wholesale Markets: Expert Insights on Potentials and Challenges for OTC Trading in Europe," Energies, MDPI, vol. 12(5), pages 1-25, March.
    5. Frondel, Manuel & Kaeding, Matthias & Sommer, Stephan, 2022. "Market premia for renewables in Germany: The effect on electricity prices," Energy Economics, Elsevier, vol. 109(C).
    6. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    7. Liebensteiner, Mario & Wrienz, Matthias, 2020. "Do Intermittent Renewables Threaten the Electricity Supply Security?," Energy Economics, Elsevier, vol. 87(C).
    8. Keles, Dogan & Bublitz, Andreas & Zimmermann, Florian & Genoese, Massimo & Fichtner, Wolf, 2016. "Analysis of design options for the electricity market: The German case," Applied Energy, Elsevier, vol. 183(C), pages 884-901.
    9. Diana Bottger & Philipp Hartel, 2021. "On Wholesale Electricity Prices and Market Values in a Carbon-Neutral Energy System," Papers 2105.01127, arXiv.org.
    10. Böttger, Diana & Härtel, Philipp, 2022. "On wholesale electricity prices and market values in a carbon-neutral energy system," Energy Economics, Elsevier, vol. 106(C).
    11. Specht, Jan Martin & Madlener, Reinhard, 2019. "Energy Supplier 2.0: A conceptual business model for energy suppliers aggregating flexible distributed assets and policy issues raised," Energy Policy, Elsevier, vol. 135(C).
    12. Nolting, Lars & Praktiknjo, Aaron, 2020. "Can we phase-out all of them? Probabilistic assessments of security of electricity supply for the German case," Applied Energy, Elsevier, vol. 263(C).
    13. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    14. Simshauser, Paul, 2021. "Vertical integration, peaking plant commitments and the role of credit quality in energy-only markets," Energy Economics, Elsevier, vol. 104(C).
    15. Sebastian Schäfer & Lisa Altvater, 2021. "A Capacity Market for the Transition towards Renewable-Based Electricity Generation with Enhanced Political Feasibility," Energies, MDPI, vol. 14(18), pages 1-24, September.
    16. Yue Pu & Yunting Li & Yingzi Wang, 2021. "Structure Characteristics and Influencing Factors of Cross-Border Electricity Trade: A Complex Network Perspective," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    17. Schöniger, Franziska & Morawetz, Ulrich B., 2022. "What comes down must go up: Why fluctuating renewable energy does not necessarily increase electricity spot price variance in Europe," Energy Economics, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McConnell, Dylan & Hearps, Patrick & Eales, Dominic & Sandiford, Mike & Dunn, Rebecca & Wright, Matthew & Bateman, Lachlan, 2013. "Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 58(C), pages 17-27.
    2. Azofra, D. & Martínez, E. & Jiménez, E. & Blanco, J. & Saenz-Díez, J.C., 2014. "Comparison of the influence of biomass, solar–thermal and small hydraulic power on the Spanish electricity prices by means of artificial intelligence techniques," Applied Energy, Elsevier, vol. 121(C), pages 28-37.
    3. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    4. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    5. Espinosa, María Paz & Pizarro-Irizar, Cristina, 2018. "Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 902-914.
    6. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Jakub Sawulski & Jan Witajewski-Baltvilks, 2017. "Optimal RES differentiation under technological uncertainty," IBS Working Papers 07/2017, Instytut Badan Strukturalnych.
    8. Welisch, Marijke, 2019. "Multi-unit renewables auctions for small markets - Designing the Danish multi-technology auction scheme," Renewable Energy, Elsevier, vol. 131(C), pages 372-380.
    9. Cludius, Johanna & Forrest, Sam & MacGill, Iain, 2014. "Distributional effects of the Australian Renewable Energy Target (RET) through wholesale and retail electricity price impacts," Energy Policy, Elsevier, vol. 71(C), pages 40-51.
    10. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    11. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    12. Peeter Pikk & Marko Viiding, 2013. "The dangers of marginal cost based electricity pricing," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 13(1), pages 49-62, July.
    13. Bahramian, Pejman & Jenkins, Glenn P. & Milne, Frank, 2021. "The displacement impacts of wind power electricity generation: Costly lessons from Ontario," Energy Policy, Elsevier, vol. 152(C).
    14. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da, 2019. "The “Merit-order effect” of wind and solar power: Volatility and determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 54-62.
    15. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    16. Böckers, Veit & Giessing, Leonie & Rösch, Jürgen, 2013. "The green game changer: An empirical assessment of the effects of wind and solar power on the merit order," DICE Discussion Papers 104, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    17. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    18. Alexander Ryota Keeley, Kenichi Matsumoto, Kenta Tanaka, Yogi Sugiawan, and Shunsuke Managi, 2020. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    19. Auer, Hans & Haas, Reinhard, 2016. "On integrating large shares of variable renewables into the electricity system," Energy, Elsevier, vol. 115(P3), pages 1592-1601.
    20. Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej37-si2-praktiknjo. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.