IDEAS home Printed from https://ideas.repec.org/a/aen/eeepjl/1_1_05.html
   My bibliography  Save this article

The Influence of Shale Gas on U.S. Energy and Environmental Policy

Author

Listed:
  • Henry D. Jacoby
  • Francis M. O'Sullivan
  • Sergey Paltsev

Abstract

No abstract is available for this item.

Suggested Citation

  • Henry D. Jacoby & Francis M. O'Sullivan & Sergey Paltsev, 2012. "The Influence of Shale Gas on U.S. Energy and Environmental Policy," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
  • Handle: RePEc:aen:eeepjl:1_1_05
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/eeeparticle.aspx?id=7
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paltsev, Sergey & Jacoby, Henry D. & Reilly, John M. & Ejaz, Qudsia J. & Morris, Jennifer & O'Sullivan, Francis & Rausch, Sebastian & Winchester, Niven & Kragha, Oghenerume, 2011. "The future of U.S. natural gas production, use, and trade," Energy Policy, Elsevier, vol. 39(9), pages 5309-5321, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles F. Mason & Lucija A. Muehlenbachs & Sheila M. Olmstead, 2015. "The Economics of Shale Gas Development," Annual Review of Resource Economics, Annual Reviews, vol. 7(1), pages 269-289, October.
    2. Wilkerson, Jordan & Larsen, Peter & Barbose, Galen, 2014. "Survey of Western U.S. electric utility resource plans," Energy Policy, Elsevier, vol. 66(C), pages 90-103.
    3. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    4. Yu Zhang & John A. Rupp & John D. Graham, 2021. "Contrasting Public and Scientific Assessments of Fracking," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    5. Fleming, David & Komarek, Timothy & Partridge, Mark & Measham, Thomas, 2015. "The Booming Socioeconomic Impacts of Shale: A Review of Findings and Methods in the Empirical Literature," MPRA Paper 68487, University Library of Munich, Germany.
    6. Sergey Paltsev & Valerie Karplus & Henry Chen & Ioanna Karkatsouli & John Reilly & Henry Jacoby, 2015. "Regulatory control of vehicle and power plant emissions: how effective and at what cost?," Climate Policy, Taylor & Francis Journals, vol. 15(4), pages 438-457, July.
    7. Sheridan Few & Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Stephane Mangeon & Dan Bernie & Jason Lowe, 2017. "The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties," Energies, MDPI, vol. 10(2), pages 1-22, January.
    8. Yuan, Jiehui & Luo, Dongkun & Feng, Lianyong, 2015. "A review of the technical and economic evaluation techniques for shale gas development," Applied Energy, Elsevier, vol. 148(C), pages 49-65.
    9. Hilaire, Jérôme & Bauer, Nico & Brecha, Robert J., 2015. "Boom or bust? Mapping out the known unknowns of global shale gas production potential," Energy Economics, Elsevier, vol. 49(C), pages 581-587.
    10. Paltsev, Sergey & O'Sullivan, Francis & Ejaz, Qudsia, 2013. "Shale Gas in China: Can We Expect a “Revolution”?," Conference papers 332393, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Philipp M. Richter, 2015. "From Boom to Bust? A Critical Look at US Shale Gas Projections," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    12. Chen, Hao & Geng, Hao-Peng & Ling, Hui-Ting & Peng, Song & Li, Nan & Yu, Shiwei & Wei, Yi-Ming, 2020. "Modeling the coal-to-gas switch potentials in the power sector: A case study of China," Energy, Elsevier, vol. 192(C).
    13. Jeff D. Makholm, 2012. "Marginal Costs with Wings a Ball and Chain Pipelines and Institutional Foundations for the U.S. Gas Market," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 3).
    14. Seán Diffney & Laura Malaguzzi Valeri & Darragh Walsh, 2012. "Should Coal Replace Coal? Options for the Irish Electricity Market," The Economic and Social Review, Economic and Social Studies, vol. 43(4), pages 561-596.
    15. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.
    16. Matheus Belucio & Renato Santiago & José Alberto Fuinhas & Luiz Braun & José Antunes, 2022. "The Impact of Natural Gas, Oil, and Renewables Consumption on Carbon Dioxide Emissions: European Evidence," Energies, MDPI, vol. 15(14), pages 1-16, July.
    17. Chen, Y.-H. Henry & Paltsev, Sergey & Reilly, John M. & Morris, Jennifer F. & Babiker, Mustafa H., 2016. "Long-term economic modeling for climate change assessment," Economic Modelling, Elsevier, vol. 52(PB), pages 867-883.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cesur, Resul & Tekin, Erdal & Ulker, Aydogan, 2018. "Can natural gas save lives? Evidence from the deployment of a fuel delivery system in a developing country," Journal of Health Economics, Elsevier, vol. 59(C), pages 91-108.
    2. Brigitte Knopf & Yen-Heng Henry Chen & Enrica De Cian & Hannah Förster & Amit Kanudia & Ioanna Karkatsouli & Ilkka Keppo & Tiina Koljonen & Katja Schumacher & Detlef P. Van Vuuren, 2013. "Beyond 2020 — Strategies And Costs For Transforming The European Energy System," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-38.
    3. Philipp M. Richter, 2015. "From Boom to Bust? A Critical Look at US Shale Gas Projections," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    4. Eide, Jan & de Sisternes, Fernando J. & Herzog, Howard J. & Webster, Mort D., 2014. "CO2 emission standards and investment in carbon capture," Energy Economics, Elsevier, vol. 45(C), pages 53-65.
    5. Hao Chen & Ling He & Jiachuan Chen & Bo Yuan & Teng Huang & Qi Cui, 2019. "Impacts of Clean Energy Substitution for Polluting Fossil-Fuels in Terminal Energy Consumption on the Economy and Environment in China," Sustainability, MDPI, vol. 11(22), pages 1-29, November.
    6. Enrica De Cian & Ilkka Keppo & Johannes Bollen & Samuel Carrara & Hannah Förster & Michael Hübler & Amit Kanudia & Sergey Paltsev & Ronald D. Sands & Katja Schumacher, 2013. "European-Led Climate Policy Versus Global Mitigation Action: Implications On Trade, Technology, And Energy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-28.
    7. Choi, Dong Gu & Thomas, Valerie M., 2012. "An electricity generation planning model incorporating demand response," Energy Policy, Elsevier, vol. 42(C), pages 429-441.
    8. Ediger, Volkan Ş. & Berk, Istemi, 2023. "Future availability of natural gas: Can it support sustainable energy transition?," Resources Policy, Elsevier, vol. 85(PA).
    9. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    10. Chi Kong Chyong and David M. Reiner, 2015. "Economics and Politics of Shale Gas in Europe," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    11. Paltsev, Sergey & O'Sullivan, Francis & Ejaz, Qudsia, 2013. "Shale Gas in China: Can We Expect a “Revolution”?," Conference papers 332393, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    13. Makena Coffman & Paul Bernstein & Sherilyn Wee & Clarice Schafer, 2014. "An Economic and GHG Analysis of LNG in Hawaii," Working Papers 2014-10, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    14. Octaviano, Claudia & Paltsev, Sergey & Gurgel, Angelo Costa, 2016. "Climate change policy in Brazil and Mexico: Results from the MIT EPPA model," Energy Economics, Elsevier, vol. 56(C), pages 600-614.
    15. Nam, Kyung-Min & Waugh, Caleb J. & Paltsev, Sergey & Reilly, John M. & Karplus, Valerie J., 2014. "Synergy between pollution and carbon emissions control: Comparing China and the United States," Energy Economics, Elsevier, vol. 46(C), pages 186-201.
    16. Henry D. Jacoby & Francis M. O'Sullivan & Sergey Paltsev, 2011. "The Influence of Shale Gas on U.S. Energy and Environmental Policy," RSCAS Working Papers 2011/52, European University Institute.
    17. Ahmad, Ali & Ramana, M.V., 2014. "Too costly to matter: Economics of nuclear power for Saudi Arabia," Energy, Elsevier, vol. 69(C), pages 682-694.
    18. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    19. Kathe, Mandar V. & Empfield, Abbey & Na, Jing & Blair, Elena & Fan, Liang-Shih, 2016. "Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis," Applied Energy, Elsevier, vol. 165(C), pages 183-201.
    20. Schipperus, Ouren T. & Mulder, Machiel, 2015. "The effectiveness of policies to transform a gas-exporting country into a gas-transit country: The case of The Netherlands," Energy Policy, Elsevier, vol. 84(C), pages 117-127.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:eeepjl:1_1_05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.