IDEAS home Printed from https://ideas.repec.org/r/ulb/ulbeco/2013-2065.html
   My bibliography  Save this item

Kernel density estimation on random fields: the L1 theory

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Christian Genest, 2024. "A Conversation With Marc Hallin," International Statistical Review, International Statistical Institute, vol. 92(2), pages 137-159, August.
  2. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
  3. Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
  4. Rodrigo García Arancibia & Pamela Llop & Mariel Lovatto, 2023. "Nonparametric prediction for univariate spatial data: Methods and applications," Papers in Regional Science, Wiley Blackwell, vol. 102(3), pages 635-672, June.
  5. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
  6. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
  7. Chouaf Abdelhak & Laksaci Ali, 2012. "On the functional local linear estimate for spatial regression," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 189-214, August.
  8. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Semiparametric spatial regression: theory and practice," MPRA Paper 11991, University Library of Munich, Germany, revised Oct 2006.
  9. Mohamed El Machkouri, 2013. "On the asymptotic normality of frequency polygons for strongly mixing spatial processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 193-206, October.
  10. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
  11. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
  12. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
  13. Gérard Biau & Benoît Cadre, 2004. "Nonparametric Spatial Prediction," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 327-349, October.
  14. Krebs, Johannes T.N., 2018. "Nonparametric density estimation for spatial data with wavelets," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 300-319.
  15. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
  16. Michel Carbon, 2008. "Asymptotic Normality of Frequency Polygons for Random Fields," Working Papers 2008-09, Center for Research in Economics and Statistics.
  17. Lu, Zudi & Lundervold, Arvid & Tjøstheim, Dag & Yao, Qiwei, 2007. "Exploring spatial nonlinearity using additive approximation," LSE Research Online Documents on Economics 5401, London School of Economics and Political Science, LSE Library.
  18. Sophie Dabo-Niang & Sidi Ould-Abdi & Ahmedoune Ould-Abdi & Aliou Diop, 2014. "Consistency of a nonparametric conditional mode estimator for random fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 1-39, March.
  19. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
  20. Biau, Gérard, 2002. "Optimal asymptotic quadratic errors of density estimators on random fields," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 297-307, December.
  21. Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
  22. Mustapha Rachdi & Ali Laksaci & Noriah M. Al-Kandari, 2022. "Expectile regression for spatial functional data analysis (sFDA)," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 627-655, July.
  23. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
  24. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
  25. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
  26. Michel Carbon & Thierry Duchesne, 2024. "Multivariate frequency polygon for stationary random fields," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(2), pages 263-287, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.