IDEAS home Printed from https://ideas.repec.org/r/ulb/ulbeco/2013-2065.html
   My bibliography  Save this item

Kernel density estimation on random fields: the L1 theory

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Christian Genest, 2024. "A Conversation With Marc Hallin," International Statistical Review, International Statistical Institute, vol. 92(2), pages 137-159, August.
  2. Rodrigo García Arancibia & Pamela Llop & Mariel Lovatto, 2023. "Nonparametric prediction for univariate spatial data: Methods and applications," Papers in Regional Science, Wiley Blackwell, vol. 102(3), pages 635-672, June.
  3. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
  4. Chouaf Abdelhak & Laksaci Ali, 2012. "On the functional local linear estimate for spatial regression," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 189-214, August.
  5. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Semiparametric spatial regression: theory and practice," MPRA Paper 11991, University Library of Munich, Germany, revised Oct 2006.
  6. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
  7. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
  8. Gérard Biau & Benoît Cadre, 2004. "Nonparametric Spatial Prediction," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 327-349, October.
  9. Biau, Gérard, 2002. "Optimal asymptotic quadratic errors of density estimators on random fields," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 297-307, December.
  10. Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
  11. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
  12. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
  13. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
  14. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
  15. Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
  16. Mohamed El Machkouri, 2013. "On the asymptotic normality of frequency polygons for strongly mixing spatial processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 193-206, October.
  17. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
  18. Krebs, Johannes T.N., 2018. "Nonparametric density estimation for spatial data with wavelets," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 300-319.
  19. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
  20. Michel Carbon, 2008. "Asymptotic Normality of Frequency Polygons for Random Fields," Working Papers 2008-09, Center for Research in Economics and Statistics.
  21. Lu, Zudi & Lundervold, Arvid & Tjøstheim, Dag & Yao, Qiwei, 2007. "Exploring spatial nonlinearity using additive approximation," LSE Research Online Documents on Economics 5401, London School of Economics and Political Science, LSE Library.
  22. Sophie Dabo-Niang & Sidi Ould-Abdi & Ahmedoune Ould-Abdi & Aliou Diop, 2014. "Consistency of a nonparametric conditional mode estimator for random fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 1-39, March.
  23. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
  24. Mustapha Rachdi & Ali Laksaci & Noriah M. Al-Kandari, 2022. "Expectile regression for spatial functional data analysis (sFDA)," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 627-655, July.
  25. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
  26. Michel Carbon & Thierry Duchesne, 2024. "Multivariate frequency polygon for stationary random fields," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(2), pages 263-287, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.