IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v39y1991i6p979-991.html
   My bibliography  Save this item

V-Shaped Policies for Scheduling Deteriorating Jobs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
  2. Wen-Chiung Lee, 2004. "A Note on Deteriorating Jobs and Learning in Single-Machine Scheduling Problems," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 3(1), pages 83-89, April.
  3. W-H Kuo & D-L Yang, 2008. "A note on due-date assignment and single-machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 857-859, June.
  4. J-B Wang & Z-Q Xia, 2006. "Flow shop scheduling problems with deteriorating jobs under dominating machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 220-226, February.
  5. Wang, Ji-Bo, 2007. "Single-machine scheduling problems with the effects of learning and deterioration," Omega, Elsevier, vol. 35(4), pages 397-402, August.
  6. Ming Liu & Feifeng Zheng & Chengbin Chu & Jiantong Zhang, 2012. "An FPTAS for uniform machine scheduling to minimize makespan with linear deterioration," Journal of Combinatorial Optimization, Springer, vol. 23(4), pages 483-492, May.
  7. Sun, Lin-Hui & Sun, Lin-Yan & Wang, Ming-Zheng & Wang, Ji-Bo, 2012. "Flow shop makespan minimization scheduling with deteriorating jobs under dominating machines," International Journal of Production Economics, Elsevier, vol. 138(1), pages 195-200.
  8. Baruch Mor & Gur Mosheiov, 2021. "A note: flowshop scheduling with linear deterioration and job-rejection," 4OR, Springer, vol. 19(1), pages 103-111, March.
  9. Ocetkiewicz, Krzysztof M., 2010. "A FPTAS for minimizing total completion time in a single machine time-dependent scheduling problem," European Journal of Operational Research, Elsevier, vol. 203(2), pages 316-320, June.
  10. Wang, Xiuli & Edwin Cheng, T.C., 2007. "Single-machine scheduling with deteriorating jobs and learning effects to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 178(1), pages 57-70, April.
  11. Wang, Ting & Baldacci, Roberto & Lim, Andrew & Hu, Qian, 2018. "A branch-and-price algorithm for scheduling of deteriorating jobs and flexible periodic maintenance on a single machine," European Journal of Operational Research, Elsevier, vol. 271(3), pages 826-838.
  12. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
  13. W-H Kuo & D-L Yang, 2011. "A note on due-date assignment and single-machine scheduling with deteriorating jobs and learning effects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 206-210, January.
  14. Wang, Ji-Bo & Xia, Zun-Quan, 2006. "Flow shop scheduling with deteriorating jobs under dominating machines," Omega, Elsevier, vol. 34(4), pages 327-336, August.
  15. Gawiejnowicz, Stanisław & Kurc, Wiesław, 2015. "Structural properties of time-dependent scheduling problems with the lp norm objective," Omega, Elsevier, vol. 57(PB), pages 196-202.
  16. J-B Wang & J-J Wang & P Ji, 2011. "Scheduling jobs with chain precedence constraints and deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1765-1770, September.
  17. T C E Cheng & L Kang & C T Ng, 2004. "Due-date assignment and single machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 198-203, February.
  18. Anna Arigliano & Gianpaolo Ghiani & Antonio Grieco & Emanuela Guerriero, 2017. "Single-machine time-dependent scheduling problems with fixed rate-modifying activities and resumable jobs," 4OR, Springer, vol. 15(2), pages 201-215, June.
  19. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
  20. Alan J. Soper & Vitaly A. Strusevich, 2020. "Refined conditions for V-shaped optimal sequencing on a single machine to minimize total completion time under combined effects," Journal of Scheduling, Springer, vol. 23(6), pages 665-680, December.
  21. Voutsinas, Theodore G. & Pappis, Costas P., 2002. "Scheduling jobs with values exponentially deteriorating over time," International Journal of Production Economics, Elsevier, vol. 79(3), pages 163-169, October.
  22. Al-Turki, Umar M. & Mittenthal, John & Raghavachari, M., 1996. "A dominant subset of V-shaped sequences for a class of single machine sequencing problems," European Journal of Operational Research, Elsevier, vol. 88(2), pages 345-347, January.
  23. Li, Yongqiang & Li, Gang & Sun, Linyan & Xu, Zhiyong, 2009. "Single machine scheduling of deteriorating jobs to minimize total absolute differences in completion times," International Journal of Production Economics, Elsevier, vol. 118(2), pages 424-429, April.
  24. Stanisław Gawiejnowicz & Wiesław Kurc, 2020. "New results for an open time-dependent scheduling problem," Journal of Scheduling, Springer, vol. 23(6), pages 733-744, December.
  25. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
  26. Cheng, Yushao & Sun, Shijie, 2009. "Scheduling linear deteriorating jobs with rejection on a single machine," European Journal of Operational Research, Elsevier, vol. 194(1), pages 18-27, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.