IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v58y2013icp108-114.html
   My bibliography  Save this item

The effect of surface waves on the performance characteristics of a model tidal turbine

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
  2. Wang, Shu-qi & Li, Chen-yin & Zhang, Ying & Jing, Feng-mei & Chen, Lin-feng, 2022. "Influence of pitching motion on the hydrodynamic performance of a horizontal axis tidal turbine considering the surface wave," Renewable Energy, Elsevier, vol. 189(C), pages 1020-1032.
  3. Tian, Wenlong & Ni, Xiwen & Mao, Zhaoyong & Zhang, Tianqi, 2020. "Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine," Renewable Energy, Elsevier, vol. 158(C), pages 37-48.
  4. Zhang, Zhi & Zhang, Yuquan & Zheng, Yuan & Zhang, Jisheng & Fernandez-Rodriguez, Emmanuel & Zang, Wei & Ji, Renwei, 2023. "Power fluctuation and wake characteristics of tidal stream turbine subjected to wave and current interaction," Energy, Elsevier, vol. 264(C).
  5. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
  6. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
  7. Sufian, Sufian. F. & Li, Ming & O’Connor, Brian A., 2017. "3D modelling of impacts from waves on tidal turbine wake characteristics and energy output," Renewable Energy, Elsevier, vol. 114(PA), pages 308-322.
  8. Wang, Shu-qi & Sun, Ke & Xu, Gang & Liu, Yong-tao & Bai, Xu, 2017. "Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions," Renewable Energy, Elsevier, vol. 102(PA), pages 87-97.
  9. Lewis, M.J. & Neill, S.P. & Hashemi, M.R. & Reza, M., 2014. "Realistic wave conditions and their influence on quantifying the tidal stream energy resource," Applied Energy, Elsevier, vol. 136(C), pages 495-508.
  10. Hill, Craig & Musa, Mirko & Guala, Michele, 2016. "Interaction between instream axial flow hydrokinetic turbines and uni-directional flow bedforms," Renewable Energy, Elsevier, vol. 86(C), pages 409-421.
  11. Li, Xiaorong & Li, Ming & Jordan, Laura-Beth & McLelland, Stuart & Parsons, Daniel R. & Amoudry, Laurent O. & Song, Qingyang & Comerford, Liam, 2019. "Modelling impacts of tidal stream turbines on surface waves," Renewable Energy, Elsevier, vol. 130(C), pages 725-734.
  12. Brown, S.A. & Ransley, E.J. & Xie, N. & Monk, K. & De Angelis, G.M. & Nicholls-Lee, R. & Guerrini, E. & Greaves, D.M., 2021. "On the impact of motion-thrust coupling in floating tidal energy applications," Applied Energy, Elsevier, vol. 282(PB).
  13. Lust, Ethan E. & Flack, Karen A. & Luznik, Luksa, 2018. "Survey of the near wake of an axial-flow hydrokinetic turbine in quiescent conditions," Renewable Energy, Elsevier, vol. 129(PA), pages 92-101.
  14. Walker, Jessica M. & Flack, Karen A. & Lust, Ethan E. & Schultz, Michael P. & Luznik, Luksa, 2014. "Experimental and numerical studies of blade roughness and fouling on marine current turbine performance," Renewable Energy, Elsevier, vol. 66(C), pages 257-267.
  15. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
  16. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
  17. Fontaine, A.A. & Straka, W.A. & Meyer, R.S. & Jonson, M.L. & Young, S.D. & Neary, V.S., 2020. "Performance and wake flow characterization of a 1:8.7-scale reference USDOE MHKF1 hydrokinetic turbine to establish a verification and validation test database," Renewable Energy, Elsevier, vol. 159(C), pages 451-467.
  18. Abuan, Binoe E. & Howell, Robert J., 2019. "The performance and hydrodynamics in unsteady flow of a horizontal axis tidal turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1338-1351.
  19. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
  20. Calandra, Gemma & Wang, Taiping & Miller, Calum & Yang, Zhaoqing & Polagye, Brian, 2023. "A comparison of the power potential for surface- and seabed-deployed tidal turbines in the San Juan Archipelago, Salish Sea, WA," Renewable Energy, Elsevier, vol. 214(C), pages 168-184.
  21. Guillou, Nicolas & Chapalain, Georges & Neill, Simon P., 2016. "The influence of waves on the tidal kinetic energy resource at a tidal stream energy site," Applied Energy, Elsevier, vol. 180(C), pages 402-415.
  22. Lam, Raymond & Dubon, Sergio Lopez & Sellar, Brian & Vogel, Christopher & Davey, Thomas & Steynor, Jeffrey, 2023. "Temporal and spatial characterisation of tidal blade load variation for structural fatigue testing," Renewable Energy, Elsevier, vol. 208(C), pages 665-678.
  23. Katsutoshi Shirasawa & Junichiro Minami & Tsumoru Shintake, 2017. "Scale-Model Experiments for the Surface Wave Influence on a Submerged Floating Ocean-Current Turbine," Energies, MDPI, vol. 10(5), pages 1-12, May.
  24. Draycott, S. & Steynor, J. & Nambiar, A. & Sellar, B. & Venugopal, V., 2020. "Rotational sampling of waves by tidal turbine blades," Renewable Energy, Elsevier, vol. 162(C), pages 2197-2209.
  25. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
  26. Samuel Draycott & Duncan Sutherland & Jeffrey Steynor & Brian Sellar & Vengatesan Venugopal, 2017. "Re-Creating Waves in Large Currents for Tidal Energy Applications," Energies, MDPI, vol. 10(11), pages 1-24, November.
  27. El-Shahat, Saeed A. & Li, Guojun & Fu, Lei, 2021. "Investigation of wave–current interaction for a tidal current turbine," Energy, Elsevier, vol. 227(C).
  28. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
  29. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
  30. Lust, Ethan E. & Flack, Karen A. & Luznik, Luksa, 2020. "Survey of the near wake of an axial-flow hydrokinetic turbine in the presence of waves," Renewable Energy, Elsevier, vol. 146(C), pages 2199-2209.
  31. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.