IDEAS home Printed from https://ideas.repec.org/r/eee/jmvana/v11y1981i4p581-598.html

Representations for partially exchangeable arrays of random variables

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Graham, Bryan S. & Niu, Fengshi & Powell, James L., 2024. "Kernel density estimation for undirected dyadic data," Journal of Econometrics, Elsevier, vol. 240(2).
  2. Pe[combining cedilla]ski, Marcin, 2011. "Prior symmetry, similarity-based reasoning, and endogenous categorization," Journal of Economic Theory, Elsevier, vol. 146(1), pages 111-140, January.
  3. Caron, François & Panero, Francesca & Rousseau, Judith, 2023. "On sparsity, power-law, and clustering properties of graphex processes," LSE Research Online Documents on Economics 119794, London School of Economics and Political Science, LSE Library.
  4. Laurent Davezies & Xavier D'Haultf{oe}uille & Yannick Guyonvarch, 2025. "Analytic inference with two-way clustering," Papers 2506.20749, arXiv.org.
  5. S Chandna & S C Olhede & P J Wolfe, 2022. "Local linear graphon estimation using covariates [Representations for partially exchangeable arrays of random variables]," Biometrika, Biometrika Trust, vol. 109(3), pages 721-734.
  6. Peter D. Hoff, 2009. "Multiplicative latent factor models for description and prediction of social networks," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 261-272, December.
  7. Eric Auerbach, 2019. "Identification and Estimation of a Partially Linear Regression Model using Network Data," Papers 1903.09679, arXiv.org, revised Jun 2021.
  8. Greven, Andreas & den Hollander, Frank & Klimovsky, Anton & Winter, Anita, 2024. "The grapheme-valued Wright–Fisher diffusion with mutation," Theoretical Population Biology, Elsevier, vol. 158(C), pages 76-88.
  9. Jochmans, Koen, 2024. "Nonparametric identification and estimation of stochastic block models from many small networks," Journal of Econometrics, Elsevier, vol. 242(2).
  10. Daniel Gaigall & Stefan Weber, 2025. "Jointly Exchangeable Collective Risk Models: Interaction, Structure, and Limit Theorems," Papers 2504.06287, arXiv.org.
  11. Paolo Leonetti, 2018. "Finite Partially Exchangeable Laws Are Signed Mixtures of Product Laws," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 195-214, August.
  12. Olav Kallenberg, 2012. "Schoenberg’s Theorem and Unitarily Invariant Random Arrays," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1013-1039, December.
  13. Alejandro Sanchez-Becerra, 2022. "The Network Propensity Score: Spillovers, Homophily, and Selection into Treatment," Papers 2209.14391, arXiv.org.
  14. Kaicheng Chen, 2025. "Inference in High-Dimensional Panel Models: Two-Way Dependence and Unobserved Heterogeneity," Papers 2504.18772, arXiv.org, revised Dec 2025.
  15. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
  16. Bryan S. Graham, 2019. "Dyadic Regression," Papers 1908.09029, arXiv.org.
  17. Konstantin Tikhomirov & Pierre Youssef, 2019. "On the norm of a random jointly exchangeable matrix," Journal of Theoretical Probability, Springer, vol. 32(4), pages 1990-2005, December.
  18. Robert Lunde & Purnamrita Sarkar, 2023. "Subsampling sparse graphons under minimal assumptions," Biometrika, Biometrika Trust, vol. 110(1), pages 15-32.
  19. Harold D. Chiang & Kengo Kato & Yuya Sasaki, 2023. "Inference for High-Dimensional Exchangeable Arrays," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 1595-1605, July.
  20. Hsieh, Chih-Sheng & Hsu, Yu-Chin & Ko, Stanley I.M. & Kovářík, Jaromír & Logan, Trevon D., 2024. "Non-representative sampled networks: Estimation of network structural properties by weighting," Journal of Econometrics, Elsevier, vol. 240(1).
  21. Ricardo Vélez & Tomás Prieto-Rumeau, 2015. "Random assignment processes: strong law of large numbers and De Finetti theorem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 136-165, March.
  22. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
  23. Patrick Rubin‐Delanchy & Joshua Cape & Minh Tang & Carey E. Priebe, 2022. "A statistical interpretation of spectral embedding: The generalised random dot product graph," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1446-1473, September.
  24. Greven, Andreas & den Hollander, Frank & Klimovsky, Anton & Winter, Anita, 2025. "Continuum graph dynamics via population dynamics: Well-posedness, duality and equilibria," Stochastic Processes and their Applications, Elsevier, vol. 188(C).
  25. Harold D Chiang & Yukun Ma & Joel Rodrigue & Yuya Sasaki, 2021. "Dyadic double/debiased machine learning for analyzing determinants of free trade agreements," Papers 2110.04365, arXiv.org, revised Dec 2022.
  26. Yin, Mei, 2022. "Remarks on power-law random graphs," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 183-197.
  27. Bryan S. Graham, 2020. "Sparse network asymptotics for logistic regression," Papers 2010.04703, arXiv.org.
  28. Davezies, Laurent & D’Haultfœuille, Xavier & Guyonvarch, Yannick, 2022. "The Marcinkiewicz–Zygmund law of large numbers for exchangeable arrays," Statistics & Probability Letters, Elsevier, vol. 188(C).
  29. Volfovsky, Alexander & Airoldi, Edoardo M., 2016. "Sharp total variation bounds for finitely exchangeable arrays," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 54-59.
  30. Graham, Bryan S., 2020. "Network data," Handbook of Econometrics,, Elsevier.
  31. Sewoong Oh & Soumik Pal & Raghav Somani & Raghavendra Tripathi, 2024. "Gradient Flows on Graphons: Existence, Convergence, Continuity Equations," Journal of Theoretical Probability, Springer, vol. 37(2), pages 1469-1522, June.
  32. Muhammad Jehangir Amjad & Devavrat Shah & Dennis Shen, 2017. "Robust Synthetic Control," Papers 1711.06940, arXiv.org.
  33. Susan Athey & Guido Imbens, 2025. "Identification of Average Treatment Effects in Nonparametric Panel Models," Papers 2503.19873, arXiv.org.
  34. François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
  35. Bryan S. Graham, 2024. "Sparse Network Asymptotics for Logistic Regression Under Possible Misspecification," Econometrica, Econometric Society, vol. 92(6), pages 1837-1868, November.
  36. Bryan S. Graham, 2019. "Network Data," CeMMAP working papers CWP71/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  37. Bikramjit Das & Tiandong Wang & Gengling Dai, 2022. "Asymptotic Behavior of Common Connections in Sparse Random Networks," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2071-2092, September.
  38. Olav Kallenberg, 1999. "Multivariate Sampling and the Estimation Problem for Exchangeable Arrays," Journal of Theoretical Probability, Springer, vol. 12(3), pages 859-883, July.
  39. DeMuse, Ryan & Yin, Mei, 2021. "Dimension reduction in vertex-weighted exponential random graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
  40. Chen, Kaicheng & Vogelsang, Timothy J., 2024. "Fixed-b asymptotics for panel models with two-way clustering," Journal of Econometrics, Elsevier, vol. 244(1).
  41. Konrad Menzel, 2021. "Bootstrap With Cluster‐Dependence in Two or More Dimensions," Econometrica, Econometric Society, vol. 89(5), pages 2143-2188, September.
  42. Kameswarrao S. Casukhela, 1997. "Symmetric Distributions of Random Measures in Higher Dimensions," Journal of Theoretical Probability, Springer, vol. 10(3), pages 759-771, July.
  43. Alexander Almeida & Susan Athey & Guido Imbens & Eva Lestant & Alexia Olaizola, 2025. "Estimating Variances for Causal Panel Data Estimators," Papers 2510.11841, arXiv.org, revised Nov 2025.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.