IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.06287.html
   My bibliography  Save this paper

Jointly Exchangeable Collective Risk Models: Interaction, Structure, and Limit Theorems

Author

Listed:
  • Daniel Gaigall
  • Stefan Weber

Abstract

We introduce a framework for systemic risk modeling in insurance portfolios using jointly exchangeable arrays, extending classical collective risk models to account for interactions. We establish central limit theorems that asymptotically characterize total portfolio losses, providing a theoretical foundation for approximations in large portfolios and over long time horizons. These approximations are validated through simulation-based numerical experiments. Additionally, we analyze the impact of dependence on portfolio loss distributions, with a particular focus on tail behavior.

Suggested Citation

  • Daniel Gaigall & Stefan Weber, 2025. "Jointly Exchangeable Collective Risk Models: Interaction, Structure, and Limit Theorems," Papers 2504.06287, arXiv.org.
  • Handle: RePEc:arx:papers:2504.06287
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.06287
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giesecke, Kay & Weber, Stefan, 2006. "Credit contagion and aggregate losses," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 741-767, May.
    2. Kallenberg, Olav, 1989. "On the representation theorem for exchangeable arrays," Journal of Multivariate Analysis, Elsevier, vol. 30(1), pages 137-154, July.
    3. Caroline Hillairet & Olivier Lopez, 2021. "Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2021(8), pages 671-694, September.
    4. Bessy-Roland, Yannick & Boumezoued, Alexandre & Hillairet, Caroline, 2021. "Multivariate Hawkes process for cyber insurance," Annals of Actuarial Science, Cambridge University Press, vol. 15(1), pages 14-39, March.
    5. Fahrenwaldt, Matthias A. & Weber, Stefan & Weske, Kerstin, 2018. "Pricing Of Cyber Insurance Contracts In A Network Model," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1175-1218, September.
    6. Aldous, David J., 1981. "Representations for partially exchangeable arrays of random variables," Journal of Multivariate Analysis, Elsevier, vol. 11(4), pages 581-598, December.
    7. Michel Dacorogna & Marie Kratz, 2023. "Managing cyber risk, a science in the making," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(10), pages 1000-1021, November.
    8. Caroline Hillairet & Olivier Lopez, 2021. "Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models," Post-Print hal-02564462, HAL.
    9. Laurent Davezies & Xavier D’haultfœuille & Yannick Guyonvarch, 2021. "Empirical process results for exchangeable arrays," Post-Print hal-04430851, HAL.
    10. Hillairet, Caroline & Réveillac, Anthony & Rosenbaum, Mathieu, 2023. "An expansion formula for Hawkes processes and application to cyber-insurance derivatives," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 89-119.
    11. Hillairet, Caroline & Lopez, Olivier & d'Oultremont, Louise & Spoorenberg, Brieuc, 2022. "Cyber-contagion model with network structure applied to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 88-101.
    12. Giesecke, Kay & Weber, Stefan, 2004. "Cyclical correlations, credit contagion, and portfolio losses," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3009-3036, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hillairet, Caroline & Lopez, Olivier & d'Oultremont, Louise & Spoorenberg, Brieuc, 2022. "Cyber-contagion model with network structure applied to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 88-101.
    2. Chen, Kaicheng & Vogelsang, Timothy J., 2024. "Fixed-b asymptotics for panel models with two-way clustering," Journal of Econometrics, Elsevier, vol. 244(1).
    3. Na Ren & Xin Zhang, 2024. "A novel k-generation propagation model for cyber risk and its application to cyber insurance," Papers 2408.14151, arXiv.org.
    4. Caroline Hillairet & Olivier Lopez & Louise d'Oultremont & Brieuc Spoorenberg, 2022. "Cyber contagion: impact of the network structure on the losses of an insurance portfolio," Post-Print hal-03388840, HAL.
    5. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    6. Tingqiang Chen & Binqing Xiao & Haifei Liu, 2018. "Credit Risk Contagion in an Evolving Network Model Integrating Spillover Effects and Behavioral Interventions," Complexity, Hindawi, vol. 2018, pages 1-16, March.
    7. Anand, Kartik & Gai, Prasanna & Kapadia, Sujit & Brennan, Simon & Willison, Matthew, 2013. "A network model of financial system resilience," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 219-235.
    8. Egloff, Daniel & Leippold, Markus & Vanini, Paolo, 2007. "A simple model of credit contagion," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2475-2492, August.
    9. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    10. Herbertsson, Alexander, 2007. "Pricing Synthetic CDO Tranches in a Model with Default Contagion Using the Matrix-Analytic Approach," Working Papers in Economics 270, University of Gothenburg, Department of Economics.
    11. Olav Kallenberg, 1999. "Multivariate Sampling and the Estimation Problem for Exchangeable Arrays," Journal of Theoretical Probability, Springer, vol. 12(3), pages 859-883, July.
    12. Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
    13. Delia Coculescu & Gabriele Visentin, 2017. "A default system with overspilling contagion," Papers 1709.09255, arXiv.org, revised May 2023.
    14. Jingjing Long & Cuiqing Jiang & Stanko Dimitrov & Zhao Wang, 2022. "Clues from networks: quantifying relational risk for credit risk evaluation of SMEs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-41, December.
    15. Gagliardini, Patrick & Gouriéroux, Christian, 2013. "Correlated risks vs contagion in stochastic transition models," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2241-2269.
    16. David E Allen & Robert Powell, 2012. "The fluctuating default risk of Australian banks," Australian Journal of Management, Australian School of Business, vol. 37(2), pages 297-325, August.
    17. Fu, Michael C. & Li, Bingqing & Li, Fei & Wu, Rongwen, 2025. "Contagion network, portfolio credit risk, and financial crisis," European Journal of Operational Research, Elsevier, vol. 321(3), pages 942-957.
    18. Eric Auerbach, 2019. "Identification and Estimation of a Partially Linear Regression Model using Network Data," Papers 1903.09679, arXiv.org, revised Jun 2021.
    19. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    20. Escribano, Ana & Maggi, Mario, 2019. "Intersectoral default contagion: A multivariate Poisson autoregression analysis," Economic Modelling, Elsevier, vol. 82(C), pages 376-400.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.06287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.