IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v49y2013icp119-136.html
   My bibliography  Save this item

A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
  2. Lin, Shin-Yeu & Lin, Ai-Chih, 2014. "RLOPF (risk-limiting optimal power flow) for systems with high penetration of wind power," Energy, Elsevier, vol. 71(C), pages 49-61.
  3. Zhang, Jingrui & Wang, Silu & Tang, Qinghui & Zhou, Yulu & Zeng, Tao, 2019. "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," Energy, Elsevier, vol. 172(C), pages 945-957.
  4. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
  5. Lin, Shin-Yeu & Chen, Jyun-Fu, 2013. "Distributed optimal power flow for smart grid transmission system with renewable energy sources," Energy, Elsevier, vol. 56(C), pages 184-192.
  6. Jalel Ben Hmida & Mohammad Javad Morshed & Jim Lee & Terrence Chambers, 2018. "Hybrid Imperialist Competitive and Grey Wolf Algorithm to Solve Multiobjective Optimal Power Flow with Wind and Solar Units," Energies, MDPI, vol. 11(11), pages 1-23, October.
  7. Azizivahed, Ali & Narimani, Hossein & Fathi, Mehdi & Naderi, Ehsan & Safarpour, Hamid Reza & Narimani, Mohammad Rasoul, 2018. "Multi-objective dynamic distribution feeder reconfiguration in automated distribution systems," Energy, Elsevier, vol. 147(C), pages 896-914.
  8. Khaled Nusair & Feras Alasali, 2020. "Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method," Energies, MDPI, vol. 13(14), pages 1-46, July.
  9. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Bina, Mohammad Amin & Zare, Mohsen, 2015. "Coordination of combined heat and power-thermal-wind-photovoltaic units in economic load dispatch using chance-constrained and jointly distributed random variables methods," Energy, Elsevier, vol. 79(C), pages 50-67.
  10. Mohammad Rasoul Narimani & Maigha & Jhi-Young Joo & Mariesa Crow, 2017. "Multi-Objective Dynamic Economic Dispatch with Demand Side Management of Residential Loads and Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-18, May.
  11. Sirote Khunkitti & Neville R. Watson & Rongrit Chatthaworn & Suttichai Premrudeepreechacharn & Apirat Siritaratiwat, 2019. "An Improved DA-PSO Optimization Approach for Unit Commitment Problem," Energies, MDPI, vol. 12(12), pages 1-23, June.
  12. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
  13. Younes, Mimoun & Khodja, Fouad & Kherfane, Riad Lakhdar, 2014. "Multi-objective economic emission dispatch solution using hybrid FFA (firefly algorithm) and considering wind power penetration," Energy, Elsevier, vol. 67(C), pages 595-606.
  14. Shin-Yeu Lin & Ai-Chih Lin, 2016. "Risk-Limiting Scheduling of Optimal Non-Renewable Power Generation for Systems with Uncertain Power Generation and Load Demand," Energies, MDPI, vol. 9(11), pages 1-16, October.
  15. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
  16. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
  17. Li, Shuijia & Gong, Wenyin & Hu, Chengyu & Yan, Xuesong & Wang, Ling & Gu, Qiong, 2021. "Adaptive constraint differential evolution for optimal power flow," Energy, Elsevier, vol. 235(C).
  18. Khan, Babar Sattar & Qamar, Affaq & Ullah, Farman & Bilal, Muhammad, 2023. "Ingenuity of Shannon entropy-based fractional order hybrid swarming strategy to solve optimal power flows," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  19. Secui, Dinu Calin, 2015. "The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch," Energy, Elsevier, vol. 93(P2), pages 2518-2545.
  20. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
  21. Srikanth Reddy, K. & Panwar, Lokesh & Panigrahi, B.K. & Kumar, Rajesh, 2018. "Modeling and analysis of profit based self scheduling of GENCO in electricity markets with renewable energy penetration and emission constraints," Renewable Energy, Elsevier, vol. 116(PA), pages 48-63.
  22. Martin Ćalasan & Tatjana Konjić & Katarina Kecojević & Lazar Nikitović, 2020. "Optimal Allocation of Static Var Compensators in Electric Power Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
  23. Narimani, Hossein & Razavi, Seyed-Ehsan & Azizivahed, Ali & Naderi, Ehsan & Fathi, Mehdi & Ataei, Mohammad H. & Narimani, Mohammad Rasoul, 2018. "A multi-objective framework for multi-area economic emission dispatch," Energy, Elsevier, vol. 154(C), pages 126-142.
  24. Ghasemi, Mojtaba & Ghavidel, Sahand & Akbari, Ebrahim & Vahed, Ali Azizi, 2014. "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos," Energy, Elsevier, vol. 73(C), pages 340-353.
  25. Zare, Mohsen & Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Amiri, Babak, 2014. "Multi-objective probabilistic reactive power and voltage control with wind site correlations," Energy, Elsevier, vol. 66(C), pages 810-822.
  26. Azizivahed, Ali & Narimani, Hossein & Naderi, Ehsan & Fathi, Mehdi & Narimani, Mohammad Rasoul, 2017. "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration," Energy, Elsevier, vol. 138(C), pages 355-373.
  27. Gonggui Chen & Xingting Yi & Zhizhong Zhang & Hangtian Lei, 2018. "Solving the Multi-Objective Optimal Power Flow Problem Using the Multi-Objective Firefly Algorithm with a Constraints-Prior Pareto-Domination Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.
  28. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
  29. Ma, Weiwu & Fang, Song & Liu, Gang, 2017. "Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump," Energy, Elsevier, vol. 141(C), pages 1439-1455.
  30. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
  31. Li, Y.Z. & Wu, Q.H. & Li, M.S. & Zhan, J.P., 2014. "Mean-variance model for power system economic dispatch with wind power integrated," Energy, Elsevier, vol. 72(C), pages 510-520.
  32. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
  33. Azad-Farsani, Ehsan & Agah, S.M.M. & Askarian-Abyaneh, Hossein & Abedi, Mehrdad & Hosseinian, S.H., 2016. "Stochastic LMP (Locational marginal price) calculation method in distribution systems to minimize loss and emission based on Shapley value and two-point estimate method," Energy, Elsevier, vol. 107(C), pages 396-408.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.