IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p868-d81398.html
   My bibliography  Save this article

Risk-Limiting Scheduling of Optimal Non-Renewable Power Generation for Systems with Uncertain Power Generation and Load Demand

Author

Listed:
  • Shin-Yeu Lin

    (Department of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road Kwei-Shan, Tao-Yuan 33302, Taiwan)

  • Ai-Chih Lin

    (Department of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road Kwei-Shan, Tao-Yuan 33302, Taiwan)

Abstract

This study tackles a risk-limiting scheduling problem of non-renewable power generation for large power systems, and addresses potential violations of the security constraints owing to the volatility of renewable power generation and the uncertainty of load demand. To cope with the computational challenge that arises from the probabilistic constraints in the considered problem, a computationally efficient solution algorithm that involves a bisection method, an off-line constructed artificial neural network (ANN) and an on-line point estimation method is proposed and tested on the IEEE 118-bus system. The results of tests and comparisons reveal that the proposed solution algorithm is applicable to large power systems in real time, and the solution obtained herein is much better than the conventional optimal power flow (OPF) solution in obtaining a much higher probability of satisfying the security constraints.

Suggested Citation

  • Shin-Yeu Lin & Ai-Chih Lin, 2016. "Risk-Limiting Scheduling of Optimal Non-Renewable Power Generation for Systems with Uncertain Power Generation and Load Demand," Energies, MDPI, vol. 9(11), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:868-:d:81398
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Annamaria Buonomano & Francesco Calise & Maria Vicidomini, 2016. "Design, Simulation and Experimental Investigation of a Solar System Based on PV Panels and PVT Collectors," Energies, MDPI, vol. 9(7), pages 1-17, June.
    2. Lin, Shin-Yeu & Lin, Ai-Chih, 2014. "RLOPF (risk-limiting optimal power flow) for systems with high penetration of wind power," Energy, Elsevier, vol. 71(C), pages 49-61.
    3. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    4. Salgado, R.S. & Rangel, E.L., 2012. "Optimal power flow solutions through multi-objective programming," Energy, Elsevier, vol. 42(1), pages 35-45.
    5. Zhe Luo & Seung-Ho Hong & Jong-Beom Kim, 2016. "A Price-Based Demand Response Scheme for Discrete Manufacturing in Smart Grids," Energies, MDPI, vol. 9(8), pages 1-18, August.
    6. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    7. Yun-Su Kim & Chul-Sang Hwang & Eung-Sang Kim & Changhee Cho, 2016. "State of Charge-Based Active Power Sharing Method in a Standalone Microgrid with High Penetration Level of Renewable Energy Sources," Energies, MDPI, vol. 9(7), pages 1-13, June.
    8. Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
    9. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
    10. Alessandra Curreli & Glòria Serra-Coch & Antonio Isalgue & Isabel Crespo & Helena Coch, 2016. "Solar Energy as a Form Giver for Future Cities," Energies, MDPI, vol. 9(7), pages 1-11, July.
    11. Youngho Cho & Choongman Lee & Kyeon Hur & Yong Cheol Kang & Eduard Muljadi & Sang-Ho Park & Young-Do Choy & Gi-Gab Yoon, 2016. "A Framework to Analyze the Stochastic Harmonics and Resonance of Wind Energy Grid Interconnection," Energies, MDPI, vol. 9(9), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Fu & Dong Zhen & Yongfeng Yang & Fengshou Gu & Andrew Ball, 2019. "Effects of Bounded Uncertainties on the Dynamic Characteristics of an Overhung Rotor System with Rubbing Fault," Energies, MDPI, vol. 12(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    2. Ghasemi, Mojtaba & Ghavidel, Sahand & Akbari, Ebrahim & Vahed, Ali Azizi, 2014. "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos," Energy, Elsevier, vol. 73(C), pages 340-353.
    3. Lin, Shin-Yeu & Chen, Jyun-Fu, 2013. "Distributed optimal power flow for smart grid transmission system with renewable energy sources," Energy, Elsevier, vol. 56(C), pages 184-192.
    4. Lin, Shin-Yeu & Lin, Ai-Chih, 2014. "RLOPF (risk-limiting optimal power flow) for systems with high penetration of wind power," Energy, Elsevier, vol. 71(C), pages 49-61.
    5. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    6. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
    7. Pourakbari-Kasmaei, Mahdi & Rider, Marcos J. & Mantovani, José R.S., 2014. "An unequivocal normalization-based paradigm to solve dynamic economic and emission active-reactive OPF (optimal power flow)," Energy, Elsevier, vol. 73(C), pages 554-566.
    8. Zhang, Jingrui & Wang, Silu & Tang, Qinghui & Zhou, Yulu & Zeng, Tao, 2019. "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," Energy, Elsevier, vol. 172(C), pages 945-957.
    9. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    10. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    11. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    12. Younes, Mimoun & Khodja, Fouad & Kherfane, Riad Lakhdar, 2014. "Multi-objective economic emission dispatch solution using hybrid FFA (firefly algorithm) and considering wind power penetration," Energy, Elsevier, vol. 67(C), pages 595-606.
    13. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    14. Narimani, Hossein & Razavi, Seyed-Ehsan & Azizivahed, Ali & Naderi, Ehsan & Fathi, Mehdi & Ataei, Mohammad H. & Narimani, Mohammad Rasoul, 2018. "A multi-objective framework for multi-area economic emission dispatch," Energy, Elsevier, vol. 154(C), pages 126-142.
    15. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    16. Li, Y.Z. & Wu, Q.H. & Li, M.S. & Zhan, J.P., 2014. "Mean-variance model for power system economic dispatch with wind power integrated," Energy, Elsevier, vol. 72(C), pages 510-520.
    17. Gonggui Chen & Xingting Yi & Zhizhong Zhang & Hangtian Lei, 2018. "Solving the Multi-Objective Optimal Power Flow Problem Using the Multi-Objective Firefly Algorithm with a Constraints-Prior Pareto-Domination Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.
    18. Ismail Marouani & Tawfik Guesmi & Hsan Hadj Abdallah & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Salem Rahmani, 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review," Energies, MDPI, vol. 15(12), pages 1-35, June.
    19. Xuanhu He & Wei Wang & Jiuchun Jiang & Lijie Xu, 2015. "An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow," Energies, MDPI, vol. 8(4), pages 1-26, March.
    20. Zare, Mohsen & Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Amiri, Babak, 2014. "Multi-objective probabilistic reactive power and voltage control with wind site correlations," Energy, Elsevier, vol. 66(C), pages 810-822.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:868-:d:81398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.