IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v174y2019icp886-896.html
   My bibliography  Save this item

Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Trull, Oscar & García-Díaz, J. Carlos & Troncoso, Alicia, 2021. "One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities," Energy, Elsevier, vol. 231(C).
  2. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2024. "Hyperparameter Tuning of Load-Forecasting Models Using Metaheuristic Optimization Algorithms—A Systematic Review," Mathematics, MDPI, vol. 12(21), pages 1-51, October.
  3. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
  4. Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
  5. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
  6. Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
  7. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
  8. Huang, Qian & Li, Jinghua & Zhu, Mengshu, 2020. "An improved convolutional neural network with load range discretization for probabilistic load forecasting," Energy, Elsevier, vol. 203(C).
  9. Mondal, Rakesh & Roy, Surajit Kr & Giri, Chandan, 2024. "Solar power forecasting using domain knowledge," Energy, Elsevier, vol. 302(C).
  10. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
  11. Zhang, Guoqiang & Guo, Jifeng, 2020. "A novel ensemble method for residential electricity demand forecasting based on a novel sample simulation strategy," Energy, Elsevier, vol. 207(C).
  12. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
  13. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
  14. Fan, Pengdan & Wang, Dan & Wang, Wei & Zhang, Xiuyu & Sun, Yuying, 2024. "A novel multi-energy load forecasting method based on building flexibility feature recognition technology and multi-task learning model integrating LSTM," Energy, Elsevier, vol. 308(C).
  15. Hao Zhen & Dongxiao Niu & Min Yu & Keke Wang & Yi Liang & Xiaomin Xu, 2020. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
  16. Rujia Nie & Jinxing Che & Fang Yuan & Weihua Zhao, 2024. "Forecasting peak electric load: Robust support vector regression with smooth nonconvex ϵ‐insensitive loss," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1902-1917, September.
  17. Malekizadeh, M. & Karami, H. & Karimi, M. & Moshari, A. & Sanjari, M.J., 2020. "Short-term load forecast using ensemble neuro-fuzzy model," Energy, Elsevier, vol. 196(C).
  18. Jiarong Shi & Zhiteng Wang, 2022. "A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  19. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
  20. Lu, Yakai & Tian, Zhe & Zhang, Qiang & Zhou, Ruoyu & Chu, Chengshan, 2021. "Data augmentation strategy for short-term heating load prediction model of residential building," Energy, Elsevier, vol. 235(C).
  21. Shi, Jiaqi & Li, Chenxi & Yan, Xiaohe, 2023. "Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization," Energy, Elsevier, vol. 262(PB).
  22. Sanjari, M.J. & Karami, H., 2020. "Optimal control strategy of battery-integrated energy system considering load demand uncertainty," Energy, Elsevier, vol. 210(C).
  23. Leonardo Brain García Fernández & Anna Diva Plasencia Lotufo & Carlos Roberto Minussi, 2023. "Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy," Energies, MDPI, vol. 16(10), pages 1-30, May.
  24. Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
  25. Rafati, Amir & Joorabian, Mahmood & Mashhour, Elaheh, 2020. "An efficient hour-ahead electrical load forecasting method based on innovative features," Energy, Elsevier, vol. 201(C).
  26. Liu, Jiefeng & Zhang, Zhenhao & Fan, Xianhao & Zhang, Yiyi & Wang, Jiaqi & Zhou, Ke & Liang, Shuo & Yu, Xiaoyong & Zhang, Wei, 2022. "Power system load forecasting using mobility optimization and multi-task learning in COVID-19," Applied Energy, Elsevier, vol. 310(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.