IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v146y2008i2p207-219.html
   My bibliography  Save this item

The relationship between the Beveridge-Nelson decomposition and other permanent-transitory decompositions that are popular in economics

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sbrana, Giacomo, 2013. "The exact linkage between the Beveridge–Nelson decomposition and other permanent-transitory decompositions," Economic Modelling, Elsevier, vol. 30(C), pages 311-316.
  2. Blasques, F. & van Brummelen, J. & Gorgi, P. & Koopman, S.J., 2024. "A robust Beveridge–Nelson decomposition using a score-driven approach with an application," Economics Letters, Elsevier, vol. 236(C).
  3. Tobias Hartl & Rolf Tschernig & Enzo Weber, 2020. "Fractional trends and cycles in macroeconomic time series," Papers 2005.05266, arXiv.org, revised May 2020.
  4. Tommaso Proietti, 2016. "The Multistep Beveridge--Nelson Decomposition," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 373-395, March.
  5. Murasawa, Yasutomo, 2015. "The multivariate Beveridge–Nelson decomposition with I(1) and I(2) series," Economics Letters, Elsevier, vol. 137(C), pages 157-162.
  6. Xu, Zhiwei, 2008. "Univariate Unobserved-Component Model with Non-Random Walk Permanent Component," MPRA Paper 12038, University Library of Munich, Germany.
  7. Trenkler, Carsten & Weber, Enzo, 2016. "On the identification of multivariate correlated unobserved components models," Economics Letters, Elsevier, vol. 138(C), pages 15-18.
  8. Angelia L. Grant & Joshua C.C. Chan, 2017. "A Bayesian Model Comparison for Trend‐Cycle Decompositions of Output," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(2-3), pages 525-552, March.
  9. Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
  10. Xu, Zhiwei, 2008. "Univariate Unobserved-Component Model with a Non-Random-Walk Permanent Component," MPRA Paper 50053, University Library of Munich, Germany.
  11. Murasawa Yasutomo, 2022. "Bayesian multivariate Beveridge–Nelson decomposition of I(1) and I(2) series with cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(3), pages 387-415, June.
  12. Robert Dixon & G. C. Lim, 2013. "A univariate model of aggregate labour productivity," Applied Economics, Taylor & Francis Journals, vol. 45(18), pages 2695-2695, June.
  13. Boz, Emine & Daude, Christian & Bora Durdu, C., 2011. "Emerging market business cycles: Learning about the trend," Journal of Monetary Economics, Elsevier, vol. 58(6), pages 616-631.
  14. Han, Yang & Liu, Zehao & Ma, Jun, 2020. "Growth cycles and business cycles of the Chinese economy through the lens of the unobserved components model," China Economic Review, Elsevier, vol. 63(C).
  15. Xu, Zhiwei, 2008. "Univariate Unobserved-Component Model with Non-Random Walk Permanent Component," MPRA Paper 46162, University Library of Munich, Germany.
  16. Tommaso Proietti, 2021. "Predictability, real time estimation, and the formulation of unobserved components models," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 433-454, April.
  17. repec:dgr:rugsom:12009-eef is not listed on IDEAS
  18. Panayotis G. Michaelides & Efthymios G. Tsionas & Angelos T. Vouldis & Konstantinos N. Konstantakis & Panagiotis Patrinos, 2018. "A Semi-Parametric Non-linear Neural Network Filter: Theory and Empirical Evidence," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 637-675, March.
  19. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
  20. Tobias Hartl, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," Papers 2102.10067, arXiv.org.
  21. Dungey, Mardi & Jacobs, Jan & Tian, Jing & Norden, Simon van, 2012. "On trend-cycle decomposition and data revision," Research Report 12009-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  22. Hartl, Tobias, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242380, Verein für Socialpolitik / German Economic Association.
  23. Mardi Dungey & Jan P.A.M. Jacobs & Jing Jian & Simon van Norden, 2013. "Trend-Cycle Decomposition: Implications from an Exact Structural Identification," CIRANO Working Papers 2013s-23, CIRANO.
  24. Giacomo Sbrana & Andrea Silvestrini, 2024. "The structural Theta method and its predictive performance in the M4-Competition," Temi di discussione (Economic working papers) 1457, Bank of Italy, Economic Research and International Relations Area.
  25. James Morley & Irina B. Panovska & Tara M. Sinclair, 2014. "Testing Stationarity for Unobserved Components Models," Discussion Papers 2012-41B, School of Economics, The University of New South Wales.
  26. Maddalena Cavicchioli, 2023. "Trend and cycle decomposition of Markov switching (co)integrated time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1381-1406, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.