IDEAS home Printed from https://ideas.repec.org/r/eee/csdana/v52y2008i6p2990-3010.html
   My bibliography  Save this item

Volatility forecasting using threshold heteroskedastic models of the intra-day range

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
  2. Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
  3. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
  4. Liang-Ching Lin & Li-Hsien Sun, 2019. "Modeling financial interval time series," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-20, February.
  5. Godfrey Marozva & Margaret Rutendo Magwedere, 2017. "Macroeconomic Variables, Leverage, Stock Returns and Stock Return Volatility," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 13(4), pages 264-288, AUGUST.
  6. Shay Kee Tan & Kok Haur Ng & Jennifer So-Kuen Chan, 2022. "Predicting Returns, Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models," Mathematics, MDPI, vol. 11(1), pages 1-24, December.
  7. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
  8. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
  9. Chen, Qian & Gerlach, Richard H., 2013. "The two-sided Weibull distribution and forecasting financial tail risk," International Journal of Forecasting, Elsevier, vol. 29(4), pages 527-540.
  10. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  11. Piotr Fiszeder & Marta Ma³ecka, 2022. "Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(4), pages 939-967, December.
  12. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
  13. Bagher Adabi & Mohsen Mehrara & Shapour Mohammadi, 2015. "Evaluation Approaches of Value at Risk for Tehran Stock Exchange," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(1), pages 41-62, Winter.
  14. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Modeling and forecasting dynamic conditional correlations with opening, high, low, and closing prices," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 308-321.
  15. Pavlos I. Zitis & Stelios M. Potirakis & Alex Alexandridis, 2024. "Forecasting Forex Market Volatility Using Deep Learning Models and Complexity Measures," JRFM, MDPI, vol. 17(12), pages 1-22, December.
  16. Richard Gerlach & Chao Wang, 2016. "Forecasting risk via realized GARCH, incorporating the realized range," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 501-511, April.
  17. Isuru Ratnayake & V. A. Samaranayake, 2022. "Threshold Asymmetric Conditional Autoregressive Range (TACARR) Model," Papers 2202.03351, arXiv.org, revised Mar 2022.
  18. Yuta Kurose, 2022. "Bayesian GARCH modeling for return and range," Economics Bulletin, AccessEcon, vol. 42(3), pages 1717-1727.
  19. Zhenni Tan & Yuehua Wu, 2025. "On Regime Switching Models," Mathematics, MDPI, vol. 13(7), pages 1-24, March.
  20. Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
  21. Haase, Marco & Huss, Matthias, 2018. "Guilty speculators? Range-based conditional volatility in a cross-section of wheat futures," Journal of Commodity Markets, Elsevier, vol. 10(C), pages 29-46.
  22. Richard Gerlach & Cathy W. S. Chen, 2015. "Bayesian Expected Shortfall Forecasting Incorporating the Intraday Range," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(1), pages 128-158.
  23. Borovkova, Svetlana & Permana, Ferry J., 2009. "Implied volatility in oil markets," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2022-2039, April.
  24. Ng, Kok Haur & Peiris, Shelton & Chan, Jennifer So-kuen & Allen, David & Ng, Kooi Huat, 2017. "Efficient modelling and forecasting with range based volatility models and its application," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 448-460.
  25. Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.
  26. Wu, Xinyu & Xie, Haibin & Zhang, Huanming, 2022. "Time-varying risk aversion and renminbi exchange rate volatility: Evidence from CARR-MIDAS model," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
  27. Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.