IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v97y2012icp514-524.html
   My bibliography  Save this item

Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Zixiang & Miao, Zhengqing & Han, Baoju & Qiao, Xinqi, 2022. "Effects of the number of wall mounted burners on performance of a 660 MW tangentially fired lignite boiler with annularly combined multiple airflows," Energy, Elsevier, vol. 255(C).
  2. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Cheng Heng & Liu, Hao & Parvez, Ashak M. & Wu, Tao, 2017. "A novel index for the study of synergistic effects during the co-processing of coal and biomass," Applied Energy, Elsevier, vol. 188(C), pages 215-225.
  3. Hanak, Dawid P. & Manovic, Vasilije, 2017. "Economic feasibility of calcium looping under uncertainty," Applied Energy, Elsevier, vol. 208(C), pages 691-702.
  4. Yin, Chungen, 2015. "On gas and particle radiation in pulverized fuel combustion furnaces," Applied Energy, Elsevier, vol. 157(C), pages 554-561.
  5. Oladejo, Jumoke & Adegbite, Stephen & Gao, Xiang & Liu, Hao & Wu, Tao, 2018. "Catalytic and non-catalytic synergistic effects and their individual contributions to improved combustion performance of coal/biomass blends," Applied Energy, Elsevier, vol. 211(C), pages 334-345.
  6. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
  7. Liu, Yacheng & Fan, Weidong & Li, Yu, 2016. "Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale, tangentially fired pulverized-coal boiler," Applied Energy, Elsevier, vol. 177(C), pages 323-334.
  8. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Effects of momentum ratio and velocity difference on combustion performance in lignite-fired pulverized boiler," Energy, Elsevier, vol. 165(PA), pages 825-839.
  9. Emmanouil Karampinis & Panagiotis Grammelis & Michalis Agraniotis & Ioannis Violidakis & Emmanuel Kakaras, 2014. "Co-firing of biomass with coal in thermal power plants: technology schemes, impacts, and future perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 384-399, July.
  10. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
  11. Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
  12. Chowdhury, Mohammad Shyfur Rahman & Azad, A.K. & Karim, Md. Rezwanul & Naser, Jamal & Bhuiyan, Arafat A., 2019. "Reduction of GHG emissions by utilizing biomass co-firing in a swirl-stabilized furnace," Renewable Energy, Elsevier, vol. 143(C), pages 1201-1209.
  13. Grigoroudis, Evangelos & Petridis, Konstantinos & Arabatzis, Garyfallos, 2014. "RDEA: A recursive DEA based algorithm for the optimal design of biomass supply chain networks," Renewable Energy, Elsevier, vol. 71(C), pages 113-122.
  14. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
  15. Yang Wang & Xiangyu Chen & Liping Xu & Mingwei Ma & Xiaole Huang & Feng Han & Yong Zhou & Chen Du & Yaodong Da & Lei Deng, 2023. "Computational Particle Fluid Dynamics Simulation on Combustion Characteristics of Blended Fuels of Coal, Biomass, and Oil Sludge in a 130 t h −1 Circulating Fluidized Bed Boiler," Energies, MDPI, vol. 17(1), pages 1-17, December.
  16. Aaron Fuller & Jörg Maier & Emmanouil Karampinis & Jana Kalivodova & Panagiotis Grammelis & Emmanuel Kakaras & Günter Scheffknecht, 2018. "Fly Ash Formation and Characteristics from (co-)Combustion of an Herbaceous Biomass and a Greek Lignite (Low-Rank Coal) in a Pulverized Fuel Pilot-Scale Test Facility," Energies, MDPI, vol. 11(6), pages 1-38, June.
  17. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Prevention of boiler performance degradation under large primary air ratio scenario in a 660 MW brown coal boiler," Energy, Elsevier, vol. 155(C), pages 474-483.
  18. Pérez-Jeldres, Rubén & Cornejo, Pablo & Flores, Mauricio & Gordon, Alfredo & García, Ximena, 2017. "A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: Synergistic effects and emissions profiles," Energy, Elsevier, vol. 120(C), pages 663-674.
  19. Li, Zixiang & Miao, Zhengqing, 2019. "Primary air ratio affects coal utilization mode and NOx emission in lignite pulverized boiler," Energy, Elsevier, vol. 187(C).
  20. Modliński, Norbert & Madejski, Pawel & Janda, Tomasz & Szczepanek, Krzysztof & Kordylewski, Wlodzimierz, 2015. "A validation of computational fluid dynamics temperature distribution prediction in a pulverized coal boiler with acoustic temperature measurement," Energy, Elsevier, vol. 92(P1), pages 77-86.
  21. Tabet, F. & Gökalp, I., 2015. "Review on CFD based models for co-firing coal and biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1101-1114.
  22. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
  23. Liang, Zhanwei & Chen, Hongwei & Zhao, Bin & Jia, Jiandong & Cheng, Kai, 2018. "Synergetic effects of firing gases/coal blends and adopting deep air staging on combustion characteristics," Applied Energy, Elsevier, vol. 228(C), pages 499-511.
  24. Ma, Lun & Fang, Qingyan & Tan, Peng & Zhang, Cheng & Chen, Gang & Lv, Dangzhen & Duan, Xuenong & Chen, Yiping, 2016. "Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600MWe FW down-fired utility boiler with a novel combustion system," Applied Energy, Elsevier, vol. 180(C), pages 104-115.
  25. Milićević, Aleksandar & Belošević, Srdjan & Crnomarković, Nenad & Tomanović, Ivan & Tucaković, Dragan, 2020. "Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 MWe boiler furnace," Applied Energy, Elsevier, vol. 260(C).
  26. Hanak, D.P. & Kolios, A.J. & Biliyok, C. & Manovic, V., 2015. "Probabilistic performance assessment of a coal-fired power plant," Applied Energy, Elsevier, vol. 139(C), pages 350-364.
  27. Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.