IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i11p3374-3383.html
   My bibliography  Save this item

Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
  2. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
  3. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
  4. Hamers, H.P. & Romano, M.C. & Spallina, V. & Chiesa, P. & Gallucci, F. & van Sint Annaland, M., 2015. "Boosting the IGCLC process efficiency by optimizing the desulfurization step," Applied Energy, Elsevier, vol. 157(C), pages 422-432.
  5. Bonalumi, Davide & Giuffrida, Antonio, 2016. "Investigations of an air-blown integrated gasification combined cycle fired with high-sulphur coal with post-combustion carbon capture by aqueous ammonia," Energy, Elsevier, vol. 117(P2), pages 439-449.
  6. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
  7. Xuguang Hao & Mei Song & Yunan Feng & Wen Zhang, 2019. "De-Capacity Policy Effect on China’s Coal Industry," Energies, MDPI, vol. 12(12), pages 1-16, June.
  8. Li, Fang-zhou & Kang, Jing-xian & Song, Yun-cai & Feng, Jie & Li, Wen-ying, 2020. "Thermodynamic feasibility for molybdenum-based gaseous oxides assisted looping coal gasification and its derived power plant," Energy, Elsevier, vol. 194(C).
  9. Arroyave, Juan D. & Chejne, Farid & Mejía, Juan M. & Maya, Juan C., 2020. "Evaluation of CO2 production for enhanced oil recovery from four power plants," Energy, Elsevier, vol. 206(C).
  10. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
  11. Giuffrida, A. & Bonalumi, D. & Lozza, G., 2013. "Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up," Applied Energy, Elsevier, vol. 110(C), pages 44-54.
  12. Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni, 2013. "Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up," Energy, Elsevier, vol. 53(C), pages 221-229.
  13. Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni, 2011. "Thermodynamic analysis of air-blown gasification for IGCC applications," Applied Energy, Elsevier, vol. 88(11), pages 3949-3958.
  14. Li, Guangyu & Xu, Shisen & Zhao, Xuebin & Sun, Ruijin & Wang, Chang’an & Liu, Kang & Mao, Qisen & Che, Defu, 2020. "Investigation of chemical composition and morphology of ash deposition in syngas cooler of an industrialized two-stage entrained-flow coal gasifier," Energy, Elsevier, vol. 194(C).
  15. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
  16. Chen, Yi-Shun & Hsiau, Shu-San & Shu, Duan-You, 2018. "System efficiency improvement of IGCC with syngas clean-up," Energy, Elsevier, vol. 152(C), pages 75-83.
  17. Taufiq, Bin Nur & Kikuchi, Yasunori & Ishimoto, Takayoshi & Honda, Kuniaki & Koyama, Michihisa, 2015. "Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation," Applied Energy, Elsevier, vol. 147(C), pages 486-499.
  18. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis," Energy, Elsevier, vol. 282(C).
  19. Carlos Arnaiz del Pozo & Ángel Jiménez Álvaro & Jan Hendrik Cloete & Schalk Cloete & Shahriar Amini, 2020. "Exergy Analysis of Gas Switching Chemical Looping IGCC Plants," Energies, MDPI, vol. 13(3), pages 1-25, January.
  20. Luo, Yimo & Shao, Shuangquan & Xu, Hongbo & Tian, Changqing & Yang, Hongxing, 2014. "Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 133(C), pages 127-134.
  21. Du, Xin & Li, Yun, 2019. "Experimental comparison and optimization on granular bed filters with three types of filling schemes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  22. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2023. "Ammonia from solid fuels: A cost-effective route to energy security with negative CO2 emissions," Energy, Elsevier, vol. 278(PA).
  23. Zhang, Guoqiang & Yang, Yongping & Jin, Hongguang & Xu, Gang & Zhang, Kai, 2013. "Proposed combined-cycle power system based on oxygen-blown coal partial gasification," Applied Energy, Elsevier, vol. 102(C), pages 735-745.
  24. Mansouri Majoumerd, Mohammad & Raas, Han & De, Sudipta & Assadi, Mohsen, 2014. "Estimation of performance variation of future generation IGCC with coal quality and gasification process – Simulation results of EU H2-IGCC project," Applied Energy, Elsevier, vol. 113(C), pages 452-462.
  25. Cloete, Schalk & Arnaiz del Pozo, Carlos & Jiménez Álvaro, Ángel, 2022. "System-friendly process design: Optimizing blue hydrogen production for future energy systems," Energy, Elsevier, vol. 259(C).
  26. Lee, Adrian J. & Diwekar, Urmila M., 2012. "Optimal sensor placement in integrated gasification combined cycle power systems," Applied Energy, Elsevier, vol. 99(C), pages 255-264.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.