IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v279y2020ics0306261920313106.html
   My bibliography  Save this item

A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Yuhang & Zhang, Yi & Yi Zhang, & Zhang, Chengxu, 2022. "Effect of physical, environmental, and social factors on prediction of building energy consumption for public buildings based on real-world big data," Energy, Elsevier, vol. 261(PB).
  2. Jin, Xiaoyu & Xiao, Fu & Zhang, Chong & Chen, Zhijie, 2022. "Semi-supervised learning based framework for urban level building electricity consumption prediction," Applied Energy, Elsevier, vol. 328(C).
  3. Ma, Dingyuan & Li, Xiaodong & Lin, Borong & Zhu, Yimin, 2023. "An intelligent retrofit decision-making model for building program planning considering tacit knowledge and multiple objectives," Energy, Elsevier, vol. 263(PB).
  4. Abdul Mateen Khan & Muhammad Abubakar Tariq & Sardar Kashif Ur Rehman & Talha Saeed & Fahad K. Alqahtani & Mohamed Sherif, 2024. "BIM Integration with XAI Using LIME and MOO for Automated Green Building Energy Performance Analysis," Energies, MDPI, vol. 17(13), pages 1-36, July.
  5. Hongwen Dou & Radu Zmeureanu, 2023. "Transfer Learning Prediction Performance of Chillers for Neural Network Models," Energies, MDPI, vol. 16(20), pages 1-16, October.
  6. Schedler, Steffen & Meilinger, Stefanie & Clees, Tanja, 2024. "A new bottom-up method for classifying a building portfolio by building type, self-sufficiency rate, and access to local grid infrastructure for storage demand analysis," Applied Energy, Elsevier, vol. 371(C).
  7. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
  8. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  9. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
  10. Bobrowski, Jakub & Łaska, Grażyna, 2023. "Using spatial elimination and ranking methods in the renewable energy investment parcel search process," Energy, Elsevier, vol. 285(C).
  11. Giuseppe Aruta & Fabrizio Ascione & Romano Fistola & Teresa Iovane, 2024. "The City as a Power Hub for Boosting Renewable Energy Communities: A Case Study in Naples," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
  12. Liu, Zhengguang & Guo, Zhiling & Song, Chenchen & Du, Ying & Chen, Qi & Chen, Yuntian & Zhang, Haoran, 2023. "Business model comparison of slum-based PV to realize low-cost and flexible power generation in city-level," Applied Energy, Elsevier, vol. 344(C).
  13. Edgar A. Martínez-Sarmiento & Jose Manuel Broto & Eloi Gabaldon & Jordi Cipriano & Roberto García & Stoyan Danov, 2024. "Linked Data Generation Methodology and the Geospatial Cross-Sectional Buildings Energy Benchmarking Use Case," Energies, MDPI, vol. 17(12), pages 1-24, June.
  14. Hu, Yuqing & Cheng, Xiaoyuan & Wang, Suhang & Chen, Jianli & Zhao, Tianxiang & Dai, Enyan, 2022. "Times series forecasting for urban building energy consumption based on graph convolutional network," Applied Energy, Elsevier, vol. 307(C).
  15. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
  16. Raghu Raman & Sangeetha Gunasekar & Deepa Kaliyaperumal & Prema Nedungadi, 2024. "Navigating the Nexus of Artificial Intelligence and Renewable Energy for the Advancement of Sustainable Development Goals," Sustainability, MDPI, vol. 16(21), pages 1-25, October.
  17. Liu, Pengxiang & Wu, Zhi & Zhang, Zijun & Gu, Wei & Sun, Qirun & Qiu, Haifeng, 2024. "Exploiting geospatial shifting flexibility of building energy use for urban multi-energy system operation," Energy, Elsevier, vol. 313(C).
  18. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
  19. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Ademulegun, Oluwasola O. & Hewitt, Neil, 2021. "Mapping demand flexibility: A spatio-temporal assessment of flexibility needs, opportunities and response potential," Applied Energy, Elsevier, vol. 295(C).
  20. Thebault, Martin & Desthieux, Gilles & Castello, Roberto & Berrah, Lamia, 2022. "Large-scale evaluation of the suitability of buildings for photovoltaic integration: Case study in Greater Geneva," Applied Energy, Elsevier, vol. 316(C).
  21. Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
  22. Gao, Ding & Zhi, Yuan & Rong, Xing & Yang, Xudong, 2025. "Mismatch analysis of rooftop photovoltaics supply and farmhouse load: Data dimensionality reduction and explicable load pattern mining via hybrid deep learning," Applied Energy, Elsevier, vol. 377(PB).
  23. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
  24. Fan, Cheng & Lei, Yutian & Sun, Yongjun & Piscitelli, Marco Savino & Chiosa, Roberto & Capozzoli, Alfonso, 2022. "Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context," Energy, Elsevier, vol. 240(C).
  25. Nutkiewicz, Alex & Mastrucci, Alessio & Rao, Narasimha D. & Jain, Rishee K., 2022. "Cool roofs can mitigate cooling energy demand for informal settlement dwellers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  26. Jeeyoung Lim & Joseph J. Kim & Sunkuk Kim, 2021. "A Holistic Review of Building Energy Efficiency and Reduction Based on Big Data," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.