Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Farhan, Muhammad & Shahid, Muhammad Ihsan & Rao, Anas & Chen, Tianhao & Salam, Hamza Ahmad & Xin, Li & Xiao, Qiuhong & Ma, Fanhua, 2025. "Experimental and predictive analysis of knock inducing factors for HCNG-fueled spark ignition engines," Energy, Elsevier, vol. 322(C).
- Sun, Ping & Zhang, Jufang & Dong, Wei & Li, Decheng & Yu, Xiumin, 2023. "Prediction of oxygen-enriched combustion and emission performance on a spark ignition engine using artificial neural networks," Applied Energy, Elsevier, vol. 348(C).
- Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Liu, Yongzheng & Ma, Fanhua, 2024. "Comparative knock analysis of HCNG fueled spark ignition engine using different heat transfer models and prediction of knock intensity by artificial neural network fitting tool," Energy, Elsevier, vol. 304(C).
- Imran, S. & Korakianitis, T. & Shaukat, R. & Farooq, M. & Condoor, S. & Jayaram, S., 2018. "Experimentally tested performance and emissions advantages of using natural-gas and hydrogen fuel mixture with diesel and rapeseed methyl ester as pilot fuels," Applied Energy, Elsevier, vol. 229(C), pages 1260-1268.
- Kumar, Pankaj & Hotta, Santosh kumar & Sahoo, Niranjan & Kulkarni, Vinayak, 2025. "Experimental study of the in-cylinder pressure and performance of a biogas fueled SI engine and its prediction by ANN application," Energy, Elsevier, vol. 326(C).
- Jiang, Han & Xi, Zhongli & A. Rahman, Anas & Zhang, Xiaoqing, 2020. "Prediction of output power with artificial neural network using extended datasets for Stirling engines," Applied Energy, Elsevier, vol. 271(C).
- Anibal Aguillon Salazar & Georges Salameh & Pascal Chesse & Nicolas Bulot & Yoann Thevenoux, 2024. "Improving Fuel Consumption Prediction for Marine Diesel Engines Using Hierarchical Neural Networks and Pulsating Exhaust Models," Energies, MDPI, vol. 18(1), pages 1-26, December.
- Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Liu, Yongzheng & Ma, Fanhua, 2024. "Performance, emissions and combustion analysis of hydrogen-enriched compressed natural gas spark ignition engine by optimized Gaussian process regression and neural network at low speed on different l," Energy, Elsevier, vol. 302(C).
- Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
- Salam, Hamza Ahmad & Farhan, Muhammad & Shahid, Muhammad Ihsan & Chen, Tianhao & Rao, Anas & Li, Xin & Ma, Fanhua, 2025. "Experimental and predictive analysis of performance, emission, and combustion of a heavy-duty HCNG fueled spark-ignition engine by optimized support vector machine," Energy, Elsevier, vol. 335(C).
- Seetharaman, Sathyanarayanan & Sivan, Suresh & Dhamodaran, Gopinath & Kannan, Gopi & Sivalingam, Suyambazhahan & Kumar, K.R. Suresh & Babu, M. Dinesh, 2024. "Catalytic converter performance prediction and engine optimization when powered by diisopropyl ether/gasoline blends: Combined application of response surface methodology and artificial neural network," Energy, Elsevier, vol. 308(C).
- Manimaran, Rajayokkiam & Mohanraj, Thangavelu & Venkatesan, Moorthy & Ganesan, Rajamohan & Balasubramanian, Dhinesh, 2022. "A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approac," Energy, Elsevier, vol. 254(PB).
- Mateusz Zbikowski & Andrzej Teodorczyk, 2025. "Machine Learning for Internal Combustion Engine Optimization with Hydrogen-Blended Fuels: A Literature Review," Energies, MDPI, vol. 18(6), pages 1-20, March.
- Haruki Tajima & Takuya Tomidokoro & Takeshi Yokomori, 2022. "Deep Learning for Knock Occurrence Prediction in SI Engines," Energies, MDPI, vol. 15(24), pages 1-14, December.
- Kirankumar, K.R. & Kumar, G.N. & Kamath, Nagaraja & Gangadharan, K.V., 2024. "Experimental investigation and optimization of performance, emission, and vibro-acoustic parameters of SI engine fueled with n-propanol and gasoline blends using ANN-GA coupled with NSGA3-modified TOP," Energy, Elsevier, vol. 306(C).
- Chukwuemeka Uguba Owora & Samson Kolawole Fasogbon, 2020. "Rainfall Variability and Trends over Central Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 24(4), pages 145-156, May.
- Muninathan, K. & Venkata Ramanan, M. & Monish, N. & Baskar, G., 2024. "Economic analysis and TOPSIS approach to optimize the CI engine characteristics using span 80 mixed carbon nanotubes emulsified Sapindus trifoliatus (soapnut) biodiesel by artificial neural network pr," Applied Energy, Elsevier, vol. 355(C).
- Simsek, Suleyman & Uslu, Samet & Simsek, Hatice, 2022. "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 239(PD).
- Rao, Anas & Chen, Tianhao & Shahid, Muhammad Ihsan & Farhan, Muhammad & Xiao, Qiuhong & Ma, Fanhua, 2025. "Descriptive statistical analysis of cyclic combustion variability and performance metrics in a hydrogen-enriched CNG spark-ignition engine at low speed," Energy, Elsevier, vol. 327(C).
- Dutta, Sarajit & Khan, Muhammad Neamat Ullah & Hoque, Md Emdadul & Jin, Yingai & Alam, Firoz & Trinuruk, Piyatida, 2025. "Sustainable diesel engine performance enhancement using pyrolytic plastic oil blends: experimental investigation and artificial neural network-based prediction," Energy, Elsevier, vol. 333(C).
- Hazar, Hanbey & Tekdogan, Remziye & Sevinc, Huseyin, 2021. "Determination of the effects of oxygen-enriched air with the help of zeolites on the exhaust emission and performance of a diesel engine," Energy, Elsevier, vol. 236(C).
- Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
- Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
- Babu, D. & Thangarasu, Vinoth & Ramanathan, Anand, 2020. "Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel," Applied Energy, Elsevier, vol. 263(C).
- Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
- Aliakbari, Karim & Ebrahimi-Moghadam, Amir & Pahlavanzadeh, Mohammadsadegh & Moradi, Reza, 2023. "Performance characteristics and exhaust emissions of a single-cylinder diesel engine for different fuels: Experimental investigation and artificial intelligence network," Energy, Elsevier, vol. 284(C).
- Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Salam, Hamza Ahmad & Ma, Fanhua, 2024. "An experimental study of knock analysis of HCNG fueled SI engine by different methods and prediction of knock intensity by particle swarm optimization-support vector machine," Energy, Elsevier, vol. 309(C).
- Simsek, Suleyman & Uslu, Samet & Simsek, Hatice & Uslu, Gonca, 2021. "Multi-objective-optimization of process parameters of diesel engine fueled with biodiesel/2-ethylhexyl nitrate by using Taguchi method," Energy, Elsevier, vol. 231(C).
Printed from https://ideas.repec.org/r/eee/appene/v228y2018icp736-754.html