My bibliography
Save this item
Generation of a typical meteorological year for north–east, Nigeria
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ren, Zhengen & Paevere, Phillip & Chen, Dong, 2019. "Feasibility of off-grid housing under current and future climates," Applied Energy, Elsevier, vol. 241(C), pages 196-211.
- Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
- Okoye, Chiemeka Onyeka & Taylan, Onur & Baker, Derek K., 2016. "Solar energy potentials in strategically located cities in Nigeria: Review, resource assessment and PV system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 550-566.
- Tsung-En Hsieh & Bianca Fraincas & Keh-Chin Chang, 2023. "Generation of a Typical Meteorological Year for Global Solar Radiation in Taiwan," Energies, MDPI, vol. 16(7), pages 1-13, March.
- Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
- Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
- Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
- Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
- Fan, Xinying, 2022. "A method for the generation of typical meteorological year data using ensemble empirical mode decomposition for different climates of China and performance comparison analysis," Energy, Elsevier, vol. 240(C).
- Kulesza, Kinga, 2017. "Comparison of typical meteorological year and multi-year time series of solar conditions for Belsk, central Poland," Renewable Energy, Elsevier, vol. 113(C), pages 1135-1140.
- Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
- Putra, I Dewa Gede Arya & Nimiya, Hideyo & Sopaheluwakan, Ardhasena & Kubota, Tetsu & Lee, Han Soo & Pradana, Radyan Putra & Alfata, Muhammad Nur Fajri & Perdana, Reza Bayu & Permana, Donaldi Sukma & , 2024. "Development of typical meteorological years based on quality control of datasets in Indonesia," Renewable Energy, Elsevier, vol. 221(C).
- Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
- Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
- Huang, Kuo-Tsang, 2020. "Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application," Renewable Energy, Elsevier, vol. 157(C), pages 1102-1115.
- Okoye, Chiemeka Onyeka & Solyalı, Oğuz, 2017. "Optimal sizing of stand-alone photovoltaic systems in residential buildings," Energy, Elsevier, vol. 126(C), pages 573-584.
- Sherif, Tarek & Katia, Riwayat & Nguyen, Michelle & Ma, Nan & Rakha, Tarek, 2025. "Localizing urban building energy modeling (UBEM) through inclusive microclimate and socioeconomic data," Applied Energy, Elsevier, vol. 383(C).
- Oluwaseu Kilanko & Sunday O Oyedepo & Joseph O Dirisu & Richard O Leramo & Philip Babalola & Abraham K Aworinde & Mfon Udo & Alexander M Okonkwo & Marvelous I Akomolafe, 2023. "Typical meteorological year data analysis for optimal usage of energy systems at six selected locations in Nigeria," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 637-658.
- Chan, A.L.S., 2016. "Generation of typical meteorological years using genetic algorithm for different energy systems," Renewable Energy, Elsevier, vol. 90(C), pages 1-13.
- Haixiang Zang & Miaomiao Wang & Jing Huang & Zhinong Wei & Guoqiang Sun, 2016. "A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China," Energies, MDPI, vol. 9(12), pages 1-19, December.
- Lou, Siwei & Li, Danny H.W. & Lam, Joseph C. & Chan, Wilco W.H., 2016. "Prediction of diffuse solar irradiance using machine learning and multivariable regression," Applied Energy, Elsevier, vol. 181(C), pages 367-374.
- Topriska, Evangelia & Kolokotroni, Maria & Dehouche, Zahir & Novieto, Divine T. & Wilson, Earle A., 2016. "The potential to generate solar hydrogen for cooking applications: Case studies of Ghana, Jamaica and Indonesia," Renewable Energy, Elsevier, vol. 95(C), pages 495-509.
- Ohunakin, Olayinka S. & Adaramola, Muyiwa S. & Oyewola, Olanrewaju M. & Fagbenle, Richard O., 2015. "Solar radiation variability in Nigeria based on multiyear RegCM3 simulations," Renewable Energy, Elsevier, vol. 74(C), pages 195-207.
- Zhang, Wenhao & Li, Honglian & Wang, Mengli & Lv, Wen & Huang, Jin & Yang, Liu, 2024. "Enhancing typical Meteorological Year generation for diverse energy systems: A hybrid Sandia-machine learning approach," Renewable Energy, Elsevier, vol. 225(C).
- Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
- Carra, Elena & Ballestrín, Jesús & Polo, Jesús & Barbero, Javier & Fernández-Reche, Jesús, 2018. "Atmospheric extinction levels of solar radiation at Plataforma Solar de Almería. Application to solar thermal electric plants," Energy, Elsevier, vol. 145(C), pages 400-407.