IDEAS home Printed from https://ideas.repec.org/r/arx/papers/1410.7799.html
   My bibliography  Save this item

Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chernis Tony, 2024. "Combining Large Numbers of Density Predictions with Bayesian Predictive Synthesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 293-317, April.
  2. Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
  3. Martin Feldkircher & Luis Gruber & Florian Huber & Gregor Kastner, 2017. "Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian VARs?," Papers 1711.00564, arXiv.org, revised Mar 2024.
  4. Florian Huber & Gregor Kastner & Michael Pfarrhofer, 2025. "Introducing shrinkage in heavy-tailed state space models to predict equity excess returns," Empirical Economics, Springer, vol. 68(2), pages 535-553, February.
  5. Chen, Sihan & Ming, Lei & Yang, Haoxi & Yang, Shenggang, 2025. "Iterated Dynamic Model Averaging and application to inflation forecasting," International Review of Financial Analysis, Elsevier, vol. 102(C).
  6. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
  7. Konstantin Styrin, 2019. "Forecasting Inflation in Russia Using Dynamic Model Averaging," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 3-18, March.
  8. Konstantin Styrin, 2018. "Forecasting inflation in Russia by Dynamic Model Averaging," Bank of Russia Working Paper Series wps39, Bank of Russia.
  9. Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Nowcasting industrial production using linear and non-linear models of electricity demand," Energy Economics, Elsevier, vol. 126(C).
  10. Aparajithan Venkateswaran & Anirudh Sankar & Arun G. Chandrasekhar & Tyler H. McCormick, 2024. "Robustly estimating heterogeneity in factorial data using Rashomon Partitions," Papers 2404.02141, arXiv.org, revised Aug 2024.
  11. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
  12. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
  13. Schlösser, Alexander, 2020. "Forecasting industrial production in Germany: The predictive power of leading indicators," Ruhr Economic Papers 838, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  14. Till Weigt & Bernd Wilfling, 2021. "An approach to increasing forecast‐combination accuracy through VAR error modeling," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 686-699, July.
  15. Borup, Daniel, 2019. "Asset pricing model uncertainty," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 166-189.
  16. Krzysztof Drachal, 2018. "Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
  17. Qingying Zong & Jonathan R. Bradley, 2023. "Criterion constrained Bayesian hierarchical models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 294-320, March.
  18. Shang, Yue & Wei, Yu & Chen, Yongfei, 2022. "Cryptocurrency policy uncertainty and gold return forecasting: A dynamic Occam's window approach," Finance Research Letters, Elsevier, vol. 50(C).
  19. Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
  20. Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
  21. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
  22. Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
  23. Martin Feldkircher & Luis Gruber & Florian Huber & Gregor Kastner, 2024. "Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian vector autoregressions?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2126-2145, September.
  24. Fezzi, Carlo & Fanghella, Valeria, 2021. "Tracking GDP in real-time using electricity market data: Insights from the first wave of COVID-19 across Europe," European Economic Review, Elsevier, vol. 139(C).
  25. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
  26. Nonejad, Nima, 2021. "Predicting the return on the spot price of crude oil out-of-sample by conditioning on news-based uncertainty measures: Some new empirical results," Energy Economics, Elsevier, vol. 104(C).
  27. Bakerman, Jordan & Pazdernik, Karl & Korkmaz, Gizem & Wilson, Alyson G., 2022. "Dynamic logistic regression and variable selection: Forecasting and contextualizing civil unrest," International Journal of Forecasting, Elsevier, vol. 38(2), pages 648-661.
  28. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Feb 2025.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.