IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2008-001.html

Testing monotonicity of pricing Kernels

Author

Listed:
  • Golubev, Yuri
  • Härdle, Wolfgang Karl
  • Timofeev, Roman

Abstract

The behaviour of market agents has always been extensively covered in the literature. Risk averse behaviour, described by von Neumann and Morgenstern (1944) via a concave utility function, is considered to be a cornerstone of classical economics. Agents prefer a fixed profit over uncertain choice with the same expected value, however lately there has been a lot of discussion about the reliability of this approach. Some authors have shown that there is a reference point where market utility functions are convex. In this paper we have constructed a test to verify uncertainty about the concavity of agents' utility function by testing the monotonicity of empirical pricing kernels (EPKs). A monotone decreasing EPK corresponds to a concave utility function while non-monotone decreasing EPK means non-averse pattern on one or more intervals of the utility function. We investigated the EPK for German DAX data for years 2000, 2002 and 2004 and found the evidence of non-concave utility functions: H0 hypothesis of monotone decreasing pricing kernel was rejected at 5% and 10% significance level in 2002 and at 10% significance level in 2000.

Suggested Citation

  • Golubev, Yuri & Härdle, Wolfgang Karl & Timofeev, Roman, 2008. "Testing monotonicity of pricing Kernels," SFB 649 Discussion Papers 2008-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2008-001
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25243/1/558747256.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    3. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    7. repec:hum:wpaper:sfb649dp2007-017 is not listed on IDEAS
    8. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    9. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beare, Brendan K., 2011. "Measure preserving derivatives and the pricing kernel puzzle," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 689-697.
    2. Brendan K. Beare & Lawrence D. W. Schmidt, 2016. "An Empirical Test of Pricing Kernel Monotonicity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 338-356, March.
    3. repec:hum:wpaper:sfb649dp2009-010 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2008-001 is not listed on IDEAS
    2. Detlefsen, Kai & Härdle, Wolfgang Karl & Moro, Rouslan A., 2007. "Empirical pricing kernels and investor preferences," SFB 649 Discussion Papers 2007-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. repec:hum:wpaper:sfb649dp2007-017 is not listed on IDEAS
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    6. Brennan, Michael J & LIU, XIAOQUAN & Xia, Yihong, 2005. "Option Pricing Kernels and the ICAPM," University of California at Los Angeles, Anderson Graduate School of Management qt4d90p8ss, Anderson Graduate School of Management, UCLA.
    7. Dong Yan & Ke Zhou & Zirun Wang & Xin-Jiang He, 2025. "Portfolio selection with exogenous and endogenous transaction costs under a two-factor stochastic volatility model," Papers 2510.21156, arXiv.org, revised Nov 2025.
    8. Fornari, Fabio & Mele, Antonio, 2001. "Recovering the probability density function of asset prices using garch as diffusion approximations," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 83-110, March.
    9. Han, Bin, 2004. "Limits of Arbitrage, Sentiment and Pricing Kernal: Evidences from Index Options," Working Paper Series 2004-2, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    10. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    11. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    12. Ana M. Monteiro & Antonio A. F. Santos, 2020. "Conditional risk-neutral density from option prices by local polynomial kernel smoothing with no-arbitrage constraints," Review of Derivatives Research, Springer, vol. 23(1), pages 41-61, April.
    13. Eckhard Platen & Renata Rendek, 2012. "The Affine Nature of Aggregate Wealth Dynamics," Research Paper Series 322, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Kiesel, Rüdiger & Rahe, Florentin, 2017. "Option pricing under time-varying risk-aversion with applications to risk forecasting," Journal of Banking & Finance, Elsevier, vol. 76(C), pages 120-138.
    15. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    16. Hamed Ghanbari & Michael Oancea & Stylianos Perrakis, 2021. "Shedding light on a dark matter: Jump diffusion and option‐implied investor preferences," European Financial Management, European Financial Management Association, vol. 27(2), pages 244-286, March.
    17. Grith, Maria & Härdle, Wolfgang Karl & Schienle, Melanie, 2010. "Nonparametric estimation of risk-neutral densities," SFB 649 Discussion Papers 2010-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    19. Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2012. "Option pricing with discrete time jump processes," Post-Print halshs-00611706, HAL.
    20. Leiss, Matthias & Nax, Heinrich H., 2018. "Option-implied objective measures of market risk," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 241-249.
    21. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    22. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 449-482, October.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2008-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.