IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Dynamic Analysis of a Competitive Marketing System

Listed author(s):
  • Dick Wittink


    (School of Management)

  • Csilla Horvath


    (Department of Marketing & Marketing Research)

  • Peter S.H. Leeflang


    (Faculteit der Economische Wetenschappen)

Registered author(s):

    The focus of this paper is on models that accommodate dynamic phenomena and include consumer-focused and competitor-centered approaches. The consumer focus is represented in demand functions while the competitor orientation is captured in reaction functions. Although the extant literature has tended to restrict the competitive reactions to marketing decision variables, we also allow for feedback effects which model reactions to consequences of actions. These consequences may show both in own brand and in other brands' performance variables. We develop a VARX model with all relevant dynamic and interactive effects. Such a model is especially useful for situations in which causality, feedback and dynamic phenomena matter. Our model simultaneously includes all relevant individual brands, and we include lags that are brand-and variable-specific. We use Impulse Response Analysis to estimate the gross and net effects of marketing actions. To show how variables causally depend on each other, we use a Forecast Error Variance Decomposition. We apply the modeling process first to market-level tuna data, consistent with typical time series applications. Given a nonlinear model we use geometric averaging so as to avoid one source of aggregation bias. We apply the same modeling process then separately for each store so that we can also determine the heterogeneity in effects between stores. The variables of interest include two price promotion variables, one with support (feature and/or display), the other without. We find, as expected, that the nonsupported price elasticities are usually closer to zero than the supported price elasticities. Also, cumulative effects tend to be larger than the immediate effects, due to a tendency for some continuation of price discounting. Specifically, it appears that supported price cuts are often followed by non-supported price cuts. The Forecast Error Variance Decomposition results show that the variance of a supported price variable is explained largely by its own shocks, while a non-supported price variable's variance depends primarily on the same brand's supported price variable. The results based on store data show more evidence of dynamic effects than the market data do. Nevertheless, the average effects show somewhat similar magnitudes between the market and store-data. Importantly, there is a large amount of store heterogeneity in the effects. Thus, it appears that managers should consider the benefits from store-specific management of promotions relative to the costs.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Yale School of Management in its series Yale School of Management Working Papers with number ysm226.

    in new window

    Date of creation: 02 Oct 2001
    Handle: RePEc:ysm:somwrk:ysm226
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ysm:somwrk:ysm226. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.