IDEAS home Printed from https://ideas.repec.org/p/vua/wpaper/1990-40.html
   My bibliography  Save this paper

Product forms for availability

Author

Listed:
  • Smeitink, E.

    (Vrije Universiteit Amsterdam, Faculteit der Economische Wetenschappen en Econometrie (Free University Amsterdam, Faculty of Economics Sciences, Business Administration and Economitrics)

  • Dijk, N.M. van
  • Haverkort, B.R.

Abstract

No abstract is available for this item.

Suggested Citation

  • Smeitink, E. & Dijk, N.M. van & Haverkort, B.R., 1990. "Product forms for availability," Serie Research Memoranda 0040, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  • Handle: RePEc:vua:wpaper:1990-40
    as

    Download full text from publisher

    File URL: http://degree.ubvu.vu.nl/repec/vua/wpaper/pdf/19900040.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Douglas R. Miller, 1979. "Almost Sure Comparisons of Renewal Processes and Poisson Processes, with Application to Reliability Theory," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 406-413, November.
    2. Avinash Agrawal & Richard E. Barlow, 1984. "A Survey of Network Reliability and Domination Theory," Operations Research, INFORMS, vol. 32(3), pages 478-492, June.
    3. Dijk, N.M. van, 1989. "On 'stop=repeat' servicing for non-exponential queueing networks with blocking," Serie Research Memoranda 0023, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    4. Reibman, Andrew & Smith, Roger & Trivedi, Kishor, 1989. "Markov and Markov reward model transient analysis: An overview of numerical approaches," European Journal of Operational Research, Elsevier, vol. 40(2), pages 257-267, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    2. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Zarezadeh, S. & Asadi, M. & Balakrishnan, N., 2014. "Dynamic network reliability modeling under nonhomogeneous Poisson processes," European Journal of Operational Research, Elsevier, vol. 232(3), pages 561-571.
    4. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Gebre, Bethel A. & Coit, David W. & Tortorella, Michael, 2006. "New insights on multi-state component criticality and importance," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 894-904.
    5. Xing, Liudong & Shrestha, Akhilesh & Dai, Yuanshun, 2011. "Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1375-1385.
    6. Boiteau, M. & Dutuit, Y. & Rauzy, A. & Signoret, J.-P., 2006. "The AltaRica data-flow language in use: modeling of production availability of a multi-state system," Reliability Engineering and System Safety, Elsevier, vol. 91(7), pages 747-755.
    7. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    8. Cancela, Héctor & Petingi, Louis, 2007. "Properties of a generalized source-to-all-terminal network reliability model with diameter constraints," Omega, Elsevier, vol. 35(6), pages 659-670, December.
    9. Navarro, Jorge & Rychlik, Tomasz, 2010. "Comparisons and bounds for expected lifetimes of reliability systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 309-317, November.
    10. Carl M. Harrissp & N. U. Prabhu, 1987. "Stochastic comparisons for single‐server queues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(4), pages 555-567, August.
    11. Jorge Navarro & Pedro Hernandez, 2008. "Mean residual life functions of finite mixtures, order statistics and coherent systems," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(3), pages 277-298, April.
    12. Ruiz-Castro, Juan Eloy & Li, Quan-Lin, 2011. "Algorithm for a general discrete k-out-of-n: G system subject to several types of failure with an indefinite number of repairpersons," European Journal of Operational Research, Elsevier, vol. 211(1), pages 97-111, May.
    13. Jorge Navarro, 2016. "Stochastic comparisons of generalized mixtures and coherent systems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 150-169, March.
    14. Barker, Kash & Ramirez-Marquez, Jose Emmanuel & Rocco, Claudio M., 2013. "Resilience-based network component importance measures," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 89-97.
    15. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "Computation of survival signatures for multi-state consecutive-k systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    16. Jorge Navarro & Rafael Rubio, 2010. "Comparisons of coherent systems using stochastic precedence," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 469-486, November.
    17. Goharshady, Amir Kafshdar & Mohammadi, Fatemeh, 2020. "An efficient algorithm for computing network reliability in small treewidth," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Ira Gerhardt & Barry L. Nelson, 2009. "Transforming Renewal Processes for Simulation of Nonstationary Arrival Processes," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 630-640, November.
    19. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2012. "Propagated failure analysis for non-repairable systems considering both global and selective effects," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 96-104.
    20. Borgonovo, E., 2010. "The reliability importance of components and prime implicants in coherent and non-coherent systems including total-order interactions," European Journal of Operational Research, Elsevier, vol. 204(3), pages 485-495, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vua:wpaper:1990-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: R. Dam (email available below). General contact details of provider: https://edirc.repec.org/data/fewvunl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.