IDEAS home Printed from
   My bibliography  Save this paper

Forecasting Commodity Markets Volatility: HAR or Rough?



Commodity is one of the most volatile markets and forecasting its volatility is an issue of paramount importance. We study the dynamics of the commodity markets volatility by employing fractional stochastic volatility and heterogeneous autoregressive (HAR) models. Based on a high-frequency futures price dataset of 22 commodities, we confirm that the volatility of commodity markets is rough and volatility components over different horizons are economically and statistically significant. Long memory with anti-persistence is evident across all commodities, with weekly volatility dominating in most commodity markets and daily volatility for oil and gold markets. HAR models display a clear advantage in forecasting performance compared to fractional volatility models.

Suggested Citation

  • Mesias Alfeus & Christina Sklibosios Nikitopoulos, 2020. "Forecasting Commodity Markets Volatility: HAR or Rough?," Research Paper Series 415, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:415

    Download full text from publisher

    File URL:
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2021. "Moving average options: Machine Learning and Gauss-Hermite quadrature for a double non-Markovian problem," Papers 2108.11141,
    2. Gouden├Ęge, Ludovic & Molent, Andrea & Zanette, Antonino, 2022. "Moving average options: Machine learning and Gauss-Hermite quadrature for a double non-Markovian problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 958-974.

    More about this item


    commodity markets; realized volatility; fractional Brownian motion; HAR; volatility forecast;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.