IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-2015.html
   My bibliography  Save this paper

Rank-based tests for randomness against first-order serial dependence

Author

Listed:
  • Marc Hallin
  • Guy Melard

Abstract

Optimal rank-based procedures were derived in Hallin, Ingenbleek, and Puri (1985, 1987) and Hallin and Puri (1988) for some fundamental testing problems arising in time series analysis. The optimality properties of these procedures are of an asymptotic nature, however, whereas much of the attractiveness of rank-based methods lies in their small-sample applicability and robustness features. Accordingly, the objective of this article is twofold: (a) a study of the finite-sample behavior of the asymptotically optimal tests for randomness against first-order autoregressive moving average dependence proposed in Hallin et al. (1985), both under the null hypothesis (tables of critical values) and under alternatives of serial dependence (evaluation of the power function), and (b) an (heuristic) investigation of the robustness properties of the proposed procedures (with emphasis on the identification problem in the presence of “outliers”). We begin (Sec. 2) with a brief description of the rank-based measures of serial dependence to be considered throughout: (a) Van der Waerden, (b) Wilcoxon, (c) Laplace, and (d) Spearman—Wald—Wolfowitz autocorrelations. The article is mainly concerned with first-order (lag 1) coefficients of these types. Tables of the critical values required for performing tests of randomness are provided (Sec. 3), and the finite-sample power of the resulting tests is compared with that of their parametric competitors (Sec. 4). Although the exact level of classical parametric procedures is only approximately correct (whereas the distribution-free rank tests are of the correct size), the proposed rank-based tests compare quite favorably with the classical ones, and appear to perform at least as well as (often strictly better than) their classical counterparts. The examples of Section 5 emphasize the robustness properties of rank-based tests with respect to departures from modeling assumptions, outliers, and gross errors (Secs. 5.1 and 5.3), as well as their insensitivity to spurious end effects (Sec. 5.2). Discrepancies between rank-based and the usual parametric tests also may provide an indication that an intervention analysis should be considered (Sec. 5.4), and rank-based correlograms may detect serial dependence in series where standard methods fail to do so (Sec. 5.5). These examples show how classical Gaussian methods that take normal white noise for granted can yield misleading diagnostic information—spurious autocorrelation or failure to detect significant serial dependencies—when the data have outliers, atypical start-up behavior, and so on. Rank-based tests exhibit much better resistance to aberrations of this type, and the conclusions drawn from the methods proposed here are thus likely to be more reliable in the model-identification process than those resulting from an inspection of traditional correlograms. © 1976 Taylor & Francis Group, LLC.

Suggested Citation

  • Marc Hallin & Guy Melard, 1988. "Rank-based tests for randomness against first-order serial dependence," ULB Institutional Repository 2013/2015, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/2015
    Note: SCOPUS: ar.j
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarle Aarstad & Olav Andreas Kvitastein & Stig-Erik Jakobsen, 2019. "What Drives Enterprise Product Innovation? Assessing How Regional, National, And International Inter-Firm Collaboration Complement Or Substitute For R&D Investments," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-25, June.
    2. Diks Cees & Panchenko Valentyn, 2008. "Rank-based Entropy Tests for Serial Independence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-21, March.
    3. repec:cte:wsrepe:3729 is not listed on IDEAS
    4. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2018. "Testing for Serial Independence: Beyond the Portmanteau Approach," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 219-238, July.
    5. Hallin, M. & Vermandele, C. & Werker, B.J.M., 2003. "Serial and Nonserial Sign-and-Rank Statistics : Asymptotic Representation and Asymptotic Normality," Other publications TiSEM 620d09ba-f476-426d-b236-3, Tilburg University, School of Economics and Management.
    6. Lanh Tran & Ba Chu & Chunfeng Huang & Kim P. Huynh, 2014. "Adaptive permutation tests for serial independence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 183-208, August.
    7. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    8. M. Hallin & D. La Vecchia & H. Liu, 2022. "Center-Outward R-Estimation for Semiparametric VARMA Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 925-938, April.
    9. Guy Melard & Jean-Michel Pasteels, 1998. "User's manual of Time Series Expert: TSE version 2.3," ULB Institutional Repository 2013/14082, ULB -- Universite Libre de Bruxelles.
    10. Mark van de Wiel, 2001. "The split-up algorithm: a fast symbolic method for computing p-values of distribution-free statistics," Computational Statistics, Springer, vol. 16(4), pages 519-538, December.
    11. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    12. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2017. "A diagram to detect serial dependencies: an application to transport time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 581-594, March.
    13. Marc Hallin & Davide La Vecchia, 2014. "Semiparametrically Efficient R-Estimation for Dynamic Location-Scale Models," Working Papers ECARES ECARES 2014-45, ULB -- Universite Libre de Bruxelles.
    14. J. Terpstra & M. Rao, 2001. "Generalized Rank Estimates For An Autoregressive Time Series: A U-Statistic Approach," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 155-179, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/2015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.