IDEAS home Printed from
   My bibliography  Save this paper

Structure of Business Firm Networks and Scale-Free Models


  • Maksim Kitsak
  • Massimo Riccaboni
  • Shlomo Havlin
  • Fabio Pammolli
  • H. Eugene Stanley


We study the structure of business firm networks in the Life Sciences (LS) and the Information and Communication Technology (ICT) sectors. We analyze business firm networks and scale-free models with degree distribution P(q) proportional to (q + c)^-λ using the method of k-shell decomposition. We find that the LS network consists of three components: a "nucleus", which is a small well connected subgraph, "tendrils", which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body" which consists of the majority of nodes. At the same time we do not observe the above structure in the ICT network. Our results suggest that the sizes of the nucleus and the tendrils decrease as λ increases and disappear for λ greater or equal to 3. We compare the k-shell structure of random scale-free model networks with the real world business firm networks. The observed behavior of the k-shell structure in the two industries is consistent with a recently proposed growth model that assumes the coexistence of both preferential and random regimes in the evolution of industry networks.

Suggested Citation

  • Maksim Kitsak & Massimo Riccaboni & Shlomo Havlin & Fabio Pammolli & H. Eugene Stanley, 2008. "Structure of Business Firm Networks and Scale-Free Models," ROCK Working Papers 051, Department of Computer and Management Sciences, University of Trento, Italy, revised 16 Jan 2009.
  • Handle: RePEc:trt:rockwp:051

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zhu, Zhen & Morrison, Greg & Puliga, Michelangelo & Chessa, Alessandro & Riccaboni, Massimo, 2018. "The similarity of global value chains: A network-based measure," Network Science, Cambridge University Press, vol. 6(4), pages 607-632, December.
    2. , D. & Tessone, Claudio J. & ,, 2014. "Nestedness in networks: A theoretical model and some applications," Theoretical Economics, Econometric Society, vol. 9(3), September.
    3. Zhen Zhu & Federica Cerina & Alessandro Chessa & Guido Caldarelli & Massimo Riccaboni, 2014. "The rise of China in the international trade network: a community core detection approach," Working Papers 4/2014, IMT School for Advanced Studies Lucca, revised Apr 2014.
    4. Michael D. König & Xiaodong Liu & Yves Zenou, 2019. "R&D Networks: Theory, Empirics, and Policy Implications," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 476-491, July.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trt:rockwp:051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Loris Gaio (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.