IDEAS home Printed from
   My bibliography  Save this paper

Asymptotic Expansion and Estimation of EPMC for Linear Classification Rules in High Dimension


  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

  • Masashi Hyodo

    (Graduate School of Economics, University of Tokyo)

  • Muni S. Srivastava

    (Department of Statistics, University of Toronto,)


The problem of classifying a new observation vector into one of the two known groups distributed as multivariate normal with common covariance matrix is consid- ered. In this paper, we handle the situation that the dimension, p, of the observation vectors is less than the total number, N, of observation vectors from the two groups, but both p and N tend to in nity with the same order. Since the inverse of the sample covariance matrix is close to an ill condition in this situation, it may be better to replace it with the inverse of the ridge-type estimator of the covariance matrix in the linear discriminant analysis (LDA). The resulting rule is called the ridge-type linear discriminant analysis (RLDA). The second-order expansion of the expected probability of misclassi cation (EPMC) for RLDA is derived, and the second-order unbiased estimator of EMPC is given. These results not only provide the corresponding conclusions for LDA, but also clarify the condition that RLDA improves on LDA in terms of EPMC. Finally, the performances of the second-order approximation and the unbiased estimator are investigated by simulation.

Suggested Citation

  • Tatsuya Kubokawa & Masashi Hyodo & Muni S. Srivastava, 2011. "Asymptotic Expansion and Estimation of EPMC for Linear Classification Rules in High Dimension," CIRJE F-Series CIRJE-F-818, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2011cf818

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    2. Fujikoshi, Yasunori, 2000. "Error Bounds for Asymptotic Approximations of the Linear Discriminant Function When the Sample Sizes and Dimensionality are Large," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 1-17, April.
    3. Srivastava, Muni S., 2006. "Minimum distance classification rules for high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2057-2070, October.
    4. Gérard Letac & Hélène Massam, 2004. "All Invariant Moments of the Wishart Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(2), pages 295-318.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2011cf818. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.