IDEAS home Printed from
   My bibliography  Save this paper

Application of a High-Order Asymptotic Expansion Scheme to Long-Term Currency Options


  • Kohta Takehara

    (Graduate School of Economics, University of Tokyo)

  • Masashi Toda

    (Graduate School of Economics, University of Tokyo)

  • Akihiko Takahashi

    (Faculty of Economics, University of Tokyo)


Recently, not only academic researchers but also many practitioners have used the methodology so-called "an asymptotic expansion method" in their proposed techniques for a variety of financial issues. e.g. pricing or hedging complex derivatives under high-dimensional stochastic environments. This methodology is mathematically justified by Watanabe theory(Watanabe [1987], Yoshida [1992a,b]) in Malliavin calculus and essentially based on the framework initiated by Kunitomo and Takahashi [2003], Takahashi [1995,1999] in a financial context. In practical applications, it is desirable to investigate the accuracy and stability of the method especially with expansion up to high orders in situations where the underlying processes are highly volatile as seen in recent financial markets. After Takahashi [1995,1999] and Takahashi and Takehara [2007] had provided explicit formulas for the expansion up to the third order, Takahashi, Takehara and Toda [2009] develops general computation schemes and formulas for an arbitrary-order expansion under general diffusion-type stochastic environments. In this paper, we describe them in a simple setting to illustrate thier key idea, and to demonstrate their effectiveness apply them to pricing long-term currency options under a cross-currency Libor market model and a general stochastic volatility of a spot exchange rate with maturities up to twenty years.

Suggested Citation

  • Kohta Takehara & Masashi Toda & Akihiko Takahashi, 2010. "Application of a High-Order Asymptotic Expansion Scheme to Long-Term Currency Options," CIRJE F-Series CIRJE-F-753, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2010cf753

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Yoshifumi Muroi, 2005. "Pricing contingent claims with credit risk: Asymptotic expansion approach," Finance and Stochastics, Springer, vol. 9(3), pages 415-427, July.
    2. Naoto Kunitomo & Akihiko Takahashi, 2001. "The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 117-151.
    3. Akihiko Takahashi & Nakahiro Yoshida, 2005. "Monte Carlo Simulation with Asymptotic Method," CIRJE F-Series CIRJE-F-335, CIRJE, Faculty of Economics, University of Tokyo.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kenichiro Shiraya & Akihiko Takahashi, 2015. "An approximation formula for basket option prices under local stochastic volatility with jumps: an application to commodity markets," CARF F-Series CARF-F-361, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2010cf753. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.