IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Application of a High-Order Asymptotic Expansion Scheme to Long-Term Currency Options

  • Kohta Takehara

    (Graduate School of Economics, University of Tokyo)

  • Masashi Toda

    (Graduate School of Economics, University of Tokyo)

  • Akihiko Takahashi

    (Faculty of Economics, University of Tokyo)

Registered author(s):

    Recently, not only academic researchers but also many practitioners have used the methodology so-called "an asymptotic expansion method" in their proposed techniques for a variety of financial issues. e.g. pricing or hedging complex derivatives under high-dimensional stochastic environments. This methodology is mathematically justified by Watanabe theory(Watanabe [1987], Yoshida [1992a,b]) in Malliavin calculus and essentially based on the framework initiated by Kunitomo and Takahashi [2003], Takahashi [1995,1999] in a financial context. In practical applications, it is desirable to investigate the accuracy and stability of the method especially with expansion up to high orders in situations where the underlying processes are highly volatile as seen in recent financial markets. After Takahashi [1995,1999] and Takahashi and Takehara [2007] had provided explicit formulas for the expansion up to the third order, Takahashi, Takehara and Toda [2009] develops general computation schemes and formulas for an arbitrary-order expansion under general diffusion-type stochastic environments. In this paper, we describe them in a simple setting to illustrate thier key idea, and to demonstrate their effectiveness apply them to pricing long-term currency options under a cross-currency Libor market model and a general stochastic volatility of a spot exchange rate with maturities up to twenty years.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2010/2010cf753.pdf
    Download Restriction: no

    Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-753.

    as
    in new window

    Length: 15pages
    Date of creation: Jul 2010
    Date of revision:
    Handle: RePEc:tky:fseres:2010cf753
    Contact details of provider: Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
    Phone: +81-3-5841-5644
    Fax: +81-3-5841-8294
    Web page: http://www.cirje.e.u-tokyo.ac.jp/index.html
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Yoshifumi Muroi, 2005. "Pricing contingent claims with credit risk: Asymptotic expansion approach," Finance and Stochastics, Springer, vol. 9(3), pages 415-427, 07.
    2. Akihiko Takahashi & Nakahiro Yoshida, 2005. "Monte Carlo Simulation with Asymptotic Method," CIRJE F-Series CIRJE-F-335, CIRJE, Faculty of Economics, University of Tokyo.
    3. Naoto Kunitomo & Akihiko Takahashi, 2001. "The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 117-151.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2010cf753. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.