IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Minimax Estimation of Linear Combinations of Restricted Location Parameters

Listed author(s):
  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

Registered author(s):

    The estimation of a linear combination of several restricted location parameters is addressed from a decision-theoretic point of view. A bench-mark estimator of the linear combination is an unbiased estimator, which is minimax, but inadmissible relative to the mean squared error. An interesting issue is what is a prior distribution which results in the generalized Bayes and minimax estimator. Although it seems plausible that the generalized Bayes estimator against the uniform prior over the restricted space should be minimax, it is shown to be not minimax when the number of the location parameters, k, is more than or equal to three, while it is minimax for k = 1. In the case of k = 2, a necessary and sufficient condition for the minimaxity is given, namely, the minimaxity depends on signs of coefficients of the linear combination. When the underlying distributions are normal, we can obtain a prior distribution which results in the generalized Bayes estimator satisfying minimaxity and admissibility. Finally, it is demonstrated that the estimation of ratio of normal variances converges to the estimation of difference of the normal positive means, which gives a motivation of the issue studied here.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-723.

    in new window

    Length: 20pages
    Date of creation: Mar 2010
    Handle: RePEc:tky:fseres:2010cf723
    Contact details of provider: Postal:
    Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033

    Phone: +81-3-5841-5644
    Fax: +81-3-5841-8294
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2008. "Stein's phenomenon in estimation of means restricted to a polyhedral convex cone," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 141-164, January.
    2. √Čric Marchand & William Strawderman, 2005. "Improving on the minimum risk equivariant estimator of a location parameter which is constrained to an interval or a half-interval," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 129-143, March.
    3. Hartigan, J. A., 2004. "Uniform priors on convex sets improve risk," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 285-288, May.
    4. Tatsuya Kubokawa, 2004. "Minimaxity in Estimation of Restricted Parameters," CIRJE F-Series CIRJE-F-270, CIRJE, Faculty of Economics, University of Tokyo.
    5. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 467-498, December.
    6. Andrew Rukhin, 1992. "Asymptotic risk behavior of mean vector and variance estimators and the problem of positive normal mean," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(2), pages 299-311, June.
    7. Tatsuya Kubokawa, 1994. "Double shrinkage estimation of ratio of scale parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(1), pages 95-116, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2010cf723. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.