IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i1p141-164.html
   My bibliography  Save this article

Stein's phenomenon in estimation of means restricted to a polyhedral convex cone

Author

Listed:
  • Tsukuma, Hisayuki
  • Kubokawa, Tatsuya

Abstract

This paper treats the problem of estimating the restricted means of normal distributions with a known variance, where the means are restricted to a polyhedral convex cone which includes various restrictions such as positive orthant, simple order, tree order and umbrella order restrictions. In the context of the simultaneous estimation of the restricted means, it is of great interest to investigate decision-theoretic properties of the generalized Bayes estimator against the uniform prior distribution over the polyhedral convex cone. In this paper, the generalized Bayes estimator is shown to be minimax. It is also proved that it is admissible in the one- or two-dimensional case, but is improved on by a shrinkage estimator in the three- or more-dimensional case. This means that the so-called Stein phenomenon on the minimax generalized Bayes estimator can be extended to the case where the means are restricted to the polyhedral convex cone. The risk behaviors of the estimators are investigated through Monte Carlo simulation, and it is revealed that the shrinkage estimator has a substantial risk reduction.

Suggested Citation

  • Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2008. "Stein's phenomenon in estimation of means restricted to a polyhedral convex cone," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 141-164, January.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:141-164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00167-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities II. Multivariate reverse rule distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 499-516, December.
    2. Hartigan, J. A., 2004. "Uniform priors on convex sets improve risk," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 285-288, May.
    3. Tatsuya Kubokawa, 2004. "Minimaxity in Estimation of Restricted Parameters," CIRJE F-Series CIRJE-F-270, CIRJE, Faculty of Economics, University of Tokyo.
    4. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 467-498, December.
    5. Berry, J. Calvin, 1990. "Minimax estimation of a bounded normal mean vector," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 130-139, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatsuya Kubokawa & William E. Strawderman, 2011. "A Unified Approach to Non-minimaxity of Sets of Linear Combinations of Restricted Location Estimators," CIRJE F-Series CIRJE-F-786, CIRJE, Faculty of Economics, University of Tokyo.
    2. Tatsuya Kubokawa & William E. Strawderman, 2010. "Non-minimaxity of Linear Combinations of Restricted Location Estimators and Related Problems," CIRJE F-Series CIRJE-F-749, CIRJE, Faculty of Economics, University of Tokyo.
    3. Hisayuki Tsukuma, 2012. "Simultaneous estimation of restricted location parameters based on permutation and sign-change," Statistical Papers, Springer, vol. 53(4), pages 915-934, November.
    4. Tatsuya Kubokawa, 2010. "Minimax Estimation of Linear Combinations of Restricted Location Parameters," CIRJE F-Series CIRJE-F-723, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:141-164. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.