IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Stein's phenomenon in estimation of means restricted to a polyhedral convex cone

  • Tsukuma, Hisayuki
  • Kubokawa, Tatsuya
Registered author(s):

    This paper treats the problem of estimating the restricted means of normal distributions with a known variance, where the means are restricted to a polyhedral convex cone which includes various restrictions such as positive orthant, simple order, tree order and umbrella order restrictions. In the context of the simultaneous estimation of the restricted means, it is of great interest to investigate decision-theoretic properties of the generalized Bayes estimator against the uniform prior distribution over the polyhedral convex cone. In this paper, the generalized Bayes estimator is shown to be minimax. It is also proved that it is admissible in the one- or two-dimensional case, but is improved on by a shrinkage estimator in the three- or more-dimensional case. This means that the so-called Stein phenomenon on the minimax generalized Bayes estimator can be extended to the case where the means are restricted to the polyhedral convex cone. The risk behaviors of the estimators are investigated through Monte Carlo simulation, and it is revealed that the shrinkage estimator has a substantial risk reduction.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6WK9-4MD462P-1/2/3f485ceac3885a8a6affadfdb7d4db00
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 99 (2008)
    Issue (Month): 1 (January)
    Pages: 141-164

    as
    in new window

    Handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:141-164
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:141-164. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.