IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v67y2004i4p285-288.html
   My bibliography  Save this article

Uniform priors on convex sets improve risk

Author

Listed:
  • Hartigan, J. A.

Abstract

Let X be spherical normal with mean [theta] lying in a closed convex set C with a non-empty interior and a non-empty complement. For the prior distribution uniform over C, the mean squared error risk of the generalized Bayes estimator is less than or equal to that of X for [theta][set membership, variant]C. It is equal to that of X if and only if C is a cone, and [theta] is an apex of the cone.

Suggested Citation

  • Hartigan, J. A., 2004. "Uniform priors on convex sets improve risk," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 285-288, May.
  • Handle: RePEc:eee:stapro:v:67:y:2004:i:4:p:285-288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00027-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gatsonis, Constantine & MacGibbon, Brenda & Strawderman, William, 1987. "On the estimation of a restricted normal mean," Statistics & Probability Letters, Elsevier, vol. 6(1), pages 21-30, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kubokawa, Tatsuya & Strawderman, William E., 2011. "A unified approach to non-minimaxity of sets of linear combinations of restricted location estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1429-1444, November.
    2. Tatsuya Kubokawa & Éric Marchand & William E. Strawderman, 2014. "On Predictive Density Estimation for Location Families under Integrated L 2 and L 1 Losses," CIRJE F-Series CIRJE-F-935, CIRJE, Faculty of Economics, University of Tokyo.
    3. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2008. "Stein's phenomenon in estimation of means restricted to a polyhedral convex cone," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 141-164, January.
    4. Tsukuma, Hisayuki, 2014. "Bayesian estimation of a bounded precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 160-172.
    5. Tatsuya Kubokawa & William E. Strawderman, 2011. "A Unified Approach to Non-minimaxity of Sets of Linear Combinations of Restricted Location Estimators," CIRJE F-Series CIRJE-F-786, CIRJE, Faculty of Economics, University of Tokyo.
    6. Kubokawa, Tatsuya & Marchand, Éric & Strawderman, William E. & Turcotte, Jean-Philippe, 2013. "Minimaxity in predictive density estimation with parametric constraints," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 382-397.
    7. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2011. "Modifying estimators of ordered positive parameters under the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 164-181, January.
    8. Tatsuya Kubokawa & William E. Strawderman, 2010. "Non-minimaxity of Linear Combinations of Restricted Location Estimators and Related Problems," CIRJE F-Series CIRJE-F-749, CIRJE, Faculty of Economics, University of Tokyo.
    9. Tatsuya Kubokawa & Éric Marchand & William E. Strawderman & Jean-Philippe Turcotte, 2012. "Minimaxity in Predictive Density Estimation with Parametric Constraints," CIRJE F-Series CIRJE-F-843, CIRJE, Faculty of Economics, University of Tokyo.
    10. Kubokawa, Tatsuya & Marchand, Éric & Strawderman, William E., 2015. "On predictive density estimation for location families under integrated squared error loss," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 57-74.
    11. Tsukuma Hisayuki, 2009. "Shrinkage estimation in elliptically contoured distribution with restricted parameter space," Statistics & Risk Modeling, De Gruyter, vol. 27(1), pages 25-35, November.
    12. Tatsuya Kubokawa, 2010. "Minimax Estimation of Linear Combinations of Restricted Location Parameters," CIRJE F-Series CIRJE-F-723, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:67:y:2004:i:4:p:285-288. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.