IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20010118.html
   My bibliography  Save this paper

Moment Approximation for Least Squares Estimators in Dynamic Regression Models with a Unit Root

Author

Listed:
  • Jan F. Kiviet

    () (University of Amsterdam)

  • Garry D.A. Phillips

    (Cardiff Business School, Cardiff, Wales, UK)

Abstract

This discussion paper led to a publication in 'The Econometrics Journal' . Asymptotic expansions are employed in a dynamic regression model with a unit root inorder to find approximations for the bias, the variance and for the mean squared error of theleast-squares estimator of all coefficients. It is found that in this particular context suchexpansions exist only when the autoregressive model contains at least one non-redundant exogenousexplanatory variable and that local to zero asymptotic approaches are here without avail.Surprisingly the large sample and small disturbance asymptotic techniques give closely relatedresults, which is not the case in stable dynamic regression models. The expressions for momentapproximations are specialized to the random walk with (trend in) drift model and their accuracyis examined in Monte Carlo experiments.

Suggested Citation

  • Jan F. Kiviet & Garry D.A. Phillips, 2001. "Moment Approximation for Least Squares Estimators in Dynamic Regression Models with a Unit Root," Tinbergen Institute Discussion Papers 01-118/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20010118
    as

    Download full text from publisher

    File URL: http://papers.tinbergen.nl/01118.pdf
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chevillon, Guillaume, 2007. "Inference in the Presence of Stochastic and Deterministic Trends," ESSEC Working Papers DR 07021, ESSEC Research Center, ESSEC Business School.
    2. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    3. Liu-Evans, Gareth, 2010. "An alternative approach to approximating the moments of least squares estimators," MPRA Paper 26550, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20010118. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tinbergen Office +31 (0)10-4088900). General contact details of provider: http://edirc.repec.org/data/tinbenl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.