IDEAS home Printed from https://ideas.repec.org/p/str/wpaper/0913.html
   My bibliography  Save this paper

Simulating Wages and House Prices Using the NEG

Author

Listed:
  • Bernard Fingleton

    () (Department of Economics, University of Strathclyde)

Abstract

The paper incorporates house prices within an NEG framework leading to the spatial distributions of wages, prices and income. The model assumes that all expenditure goes to firms under a monopolistic competition market structure, that labour efficiency units are appropriate, and that spatial equilibrium exists. The house price model coefficients are estimated outside the NEG model, allowing an econometric analysis of the significance of relevant covariates. The paper illustrates the methodology by estimating wages, income and prices for small administrative areas in Great Britain, and uses the model to simulate the effects of an exogenous employment shock.

Suggested Citation

  • Bernard Fingleton, 2009. "Simulating Wages and House Prices Using the NEG," Working Papers 0913, University of Strathclyde Business School, Department of Economics.
  • Handle: RePEc:str:wpaper:0913
    as

    Download full text from publisher

    File URL: http://www.strath.ac.uk/media/1newwebsite/departmentsubject/economics/research/researchdiscussionpapers/2009/09-13BF.pdf
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dusan Paredes, 2012. "Alternative theories for explaining the spatial wage inequality: a multilevel competition among human capital, NEG and amenities," Documentos de Trabajo en Economia y Ciencia Regional 20, Universidad Catolica del Norte, Chile, Department of Economics, revised Apr 2012.
    2. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2014. "Spatial lag models with nested random effects: An instrumental variable procedure with an application to English house prices," Journal of Urban Economics, Elsevier, vol. 80(C), pages 76-86.

    More about this item

    Keywords

    new economic geography; real estate prices; spatial econometrics;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:str:wpaper:0913. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kirsty Hall) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/edstruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.