IDEAS home Printed from
   My bibliography  Save this paper

Numerical Solution of an Endogenous Growth Model with Threshold Learning


  • Baoline Chen

    (Rutgers University)


This paper describes an application of numerical methods to solve a continuous time non-linear optimal growth model with technology adoption. In the model, a non-convex production function arises from a threshold level of knowledge required to operate new technology. The study explains and illustrates how to compute the complete transition path of the growth model by applying in concert three broad numerical techniques in particular specialized ways, in order to maintain certain regularity conditions and restrictions of the model. The three broad techniques are: (i) Gauss-Laguerre quadrature for computing discounted utility over an infinite horizon; (ii) Fourth-Order Runge-Kutta method for solving differential equations; and (iii) the Penalty Functions method for solving the constrained optimization problem. The particular specializations involve linear interpolation for solving the optimal adoption time in the model and quasi-Newton iterations for maximizing the penalty-weighted objective function, the latter aided by grid search for determining initial values and Richardson extrapolation for approximating the gradient vector. Citation Copyright 1999 by Kluwer Academic Publishers.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Baoline Chen, "undated". "Numerical Solution of an Endogenous Growth Model with Threshold Learning," Computing in Economics and Finance 1997 27, Society for Computational Economics.
  • Handle: RePEc:sce:scecf7:27

    Download full text from publisher

    File URL:
    File Function: paper abstract
    Download Restriction: no

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    2. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf7:27. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.