IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Numerical Solution of an Endogenous Growth Model with Threshold Learning

Listed author(s):
  • Chen, Baoline

This paper describes an application of numerical methods to solve a continuous time non-linear optimal growth model with technology adoption. In the model, a non-convex production function arises from a threshold level of knowledge required to operate new technology. The study explains and illustrates how to compute the complete transition path of the growth model by applying in concert three broad numerical techniques in particular specialized ways, in order to maintain certain regularity conditions and restrictions of the model. The three broad techniques are: (i) Gauss-Laguerre quadrature for computing discounted utility over an infinite horizon; (ii) Fourth-Order Runge-Kutta method for solving differential equations; and (iii) the Penalty Functions method for solving the constrained optimization problem. The particular specializations involve linear interpolation for solving the optimal adoption time in the model and quasi-Newton iterations for maximizing the penalty-weighted objective function, the latter aided by grid search for determining initial values and Richardson extrapolation for approximating the gradient vector. Citation Copyright 1999 by Kluwer Academic Publishers.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to the full text of the articles in this series is restricted.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer & Society for Computational Economics in its journal Computational Economics.

Volume (Year): 13 (1999)
Issue (Month): 3 (June)
Pages: 227-247

in new window

Handle: RePEc:kap:compec:v:13:y:1999:i:3:p:227-47
Contact details of provider: Web page:

Web page:

More information through EDIRC

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:13:y:1999:i:3:p:227-47. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Rebekah McClure)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.