IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/55329.html
   My bibliography  Save this paper

Uzawa(1961)’s Steady-State Theorem in Malthusian Model

Author

Listed:
  • Li, Defu
  • Huang, Jiuli

Abstract

This paper proves that there is a similar Uzawa (1961) steady-state growth theorem in a Malthusian model: If that model possesses steady-state growth, then technical change must be purely land-augmenting and cannot include labor augmentation.

Suggested Citation

  • Li, Defu & Huang, Jiuli, 2014. "Uzawa(1961)’s Steady-State Theorem in Malthusian Model," MPRA Paper 55329, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:55329
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/55329/1/MPRA_paper_55329.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    2. H. Uzawa, 1961. "Neutral Inventions and the Stability of Growth Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 28(2), pages 117-124.
    3. Daron Acemoglu, 2003. "Labor- And Capital-Augmenting Technical Change," Journal of the European Economic Association, MIT Press, vol. 1(1), pages 1-37, March.
    4. Andreas Irmen, 2004. "Malthus and Solow - a note on closed-form solutions," Economics Bulletin, AccessEcon, vol. 10(6), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. LI, Defu & Bental, Benjamin, 2015. "Growth with Endogenous Direction of Technical Change," MPRA Paper 64124, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Defu & Bental, Benjamin, 2023. "What determines the Direction of Technological Progress(2023.11.16)?," MPRA Paper 119211, University Library of Munich, Germany, revised 16 Nov 2023.
    2. Irmen, Andreas, 2018. "A Generalized Steady-State Growth Theorem," Macroeconomic Dynamics, Cambridge University Press, vol. 22(4), pages 779-804, June.
    3. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    4. Jakub Growiec, 2008. "A new class of production functions and an argument against purely labor‐augmenting technical change," International Journal of Economic Theory, The International Society for Economic Theory, vol. 4(4), pages 483-502, December.
    5. Li, Defu & Bental, Benjamin, 2019. "A Generalized Growth Model and the Direction of Technological Progress," MPRA Paper 96509, University Library of Munich, Germany.
    6. Ekkehart Schlicht, 2016. "Directed Technical Change and Capital Deepening: A Reconsideration of Kaldor's Technical Progress Function," Metroeconomica, Wiley Blackwell, vol. 67(1), pages 119-151, February.
    7. Ekaterina Ponomareva & Alexandra Bozhechkova & Alexandr Knobel, 2012. "Factors of Economic Growth," Published Papers 172, Gaidar Institute for Economic Policy, revised 2013.
    8. Irmen, Andreas, 2011. "Steady-state growth and the elasticity of substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1215-1228, August.
    9. Jakub Growiec, 2019. "The Hardware-Software Model: A New Conceptual Framework of Production, R&D, and Growth with AI," KAE Working Papers 2019-042, Warsaw School of Economics, Collegium of Economic Analysis.
    10. Grégory LEVIEUGE & Cristina BADARAU-SEMENESCU, 2010. "Which policy-mix to mitigate the effects of the financial heterogeneity in a monetary union?," EcoMod2010 259600105, EcoMod.
    11. Li, Defu & Benjamin, Bental, 2021. "Factor Supply Elasticities, Returns to Scale, and the Direction of Technological Progress," MPRA Paper 109920, University Library of Munich, Germany.
    12. de la Fonteijne, Marcel R., 2018. "Why the concept of Hicks, Harrod, Solow neutral and even non-neutral augmented technical progress is flawed in principle in any economic model," MPRA Paper 107730, University Library of Munich, Germany.
    13. Gregory Casey, 2018. "Technology-Driven Unemployment," 2018 Meeting Papers 302, Society for Economic Dynamics.
    14. Li, defu & Bental, Benjamin, 2023. "A Note on the Euler Equation of the Growth Model," MPRA Paper 119048, University Library of Munich, Germany.
    15. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.
    16. James Bessen, 2008. "Accounting for Productivity Growth When Technical Change is Biased," Working Papers 0802, Research on Innovation.
    17. Klump, Rainer & McAdam, Peter & Willman, Alpo, 2008. "Unwrapping some euro area growth puzzles: Factor substitution, productivity and unemployment," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 645-666, June.
    18. Murach, Michael & Wagner, Helmut & Kim, Jungsuk & Park, Donghyun, 2022. "Trajectories to high income: Comparing the growth dynamics in China, South Korea, and Japan with cointegrated VAR models," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 492-511.
    19. Miguel A León-Ledesma & Peter McAdam & Alpo Willman, 2012. "Non-Balanced Growth and Production Technology Estimation," Studies in Economics 1204, School of Economics, University of Kent.
    20. Danny Givon, 2006. "Factor Replacement versus Factor Substitution, Mechanization and Asymptotic Harrod Neutrality," DEGIT Conference Papers c011_028, DEGIT, Dynamics, Economic Growth, and International Trade.

    More about this item

    Keywords

    Malthusian Model; Neoclassical Growth Model; Uzawa’s Steady-State Theorem;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:55329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.