IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A Pareto-metaheuristic for a bi-objective winner determination problem in a combinatorial reverse auction

Listed author(s):
  • Buer, Tobias
  • Kopfer, Herbert

The bi-objective winner determination problem (2WDP-SC) of a combinatorial procurement auction for transport contracts comes up to a multi-criteria set covering problem. We are given a set B of bundle bids. A bundle bid b in B consists of a bidding carrier c_b, a bid price p_b, and a set tau_b of transport contracts which is a subset of the set T of tendered transport contracts. Additionally, the transport quality q_t,c_b is given which is expected to be realized when a transport contract t is executed by a carrier c_b. The task of the auctioneer is to find a set X of winning bids (X is subset of B), such that each transport contract is part of at least one winning bid, the total procurement costs are minimized, and the total transport quality is maximized. This article presents a metaheuristic approach for the 2WDP-SC which integrates the greedy randomized adaptive search procedure, large neighborhood search, and self-adaptive parameter setting in order to find a competitive set of non-dominated solutions. The procedure outperforms existing heuristics. Computational experiments performed on a set of benchmark instances show that, for small instances, the presented procedure is the sole approach that succeeds to find all Pareto-optimal solutions. For each of the large benchmark instances, according to common multi-criteria quality indicators of the literature, it attains new best-known solution sets.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 36062.

in new window

Date of creation: 19 Jan 2012
Handle: RePEc:pra:mprapa:36062
Contact details of provider: Postal:
Ludwigstra├če 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:36062. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.