IDEAS home Printed from
   My bibliography  Save this paper

Estimation of a system of national accounts: implementation with mathematica


  • Temel, Tugrul


This study implements Mathematica to estimate a system of national accounts. The estimation methods applied are portrayed in Danilov and Magnus (2008), including the Bayesian estimation, restricted and unrestricted least-squares estimation and best linear unbiased estimation. Operationalizing these methods in the Mathematica environment is the main contribution of the current study. In light of the United Nations�e¤orts aimed to standardize across countries the compilation of national accounts, the Mathematica codes developed here should provide an important tool both for the estimation of unrealized or unavailable national accounts data and for conducting cross-country and within-country macroeconomic policy analysis.

Suggested Citation

  • Temel, Tugrul, 2011. "Estimation of a system of national accounts: implementation with mathematica," MPRA Paper 35446, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:35446

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Magnus, Jan R & van Tongeren, Jan W & de Vos, Aart F, 2000. "National Accounts Estimation Using Indicator Ratios," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 46(3), pages 329-350, September.
    2. Danilov, Dmitry & Magnus, Jan R., 2008. "On the estimation of a large sparse Bayesian system: The Snaer program," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4203-4224, May.
    3. Dmitry Danilov & Jan R. Magnus, 2007. "Some equivalences in linear estimation (in Russian)," Quantile, Quantile, issue 3, pages 83-90, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    System of national accounts; Social Accounting Matrix; Bayesian estimation; Least-squares estimation; Best linear unbiased estimation; Linear programming;

    JEL classification:

    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:35446. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.