IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/31840.html
   My bibliography  Save this paper

Confidence intervals in stationary autocorrelated time series

Author

Listed:
  • Halkos, George
  • Kevork, Ilias

Abstract

In this study we examine in covariance stationary time series the consequences of constructing confidence intervals for the population mean using the classical methodology based on the hypothesis of independence. As criteria we use the actual probability the confidence interval of the classical methodology to include the population mean (actual confidence level), and the ratio of the sampling error of the classical methodology over the corresponding actual one leading to equality between actual and nominal confidence levels. These criteria are computed analytically under different sample sizes, and for different autocorrelation structures. For the AR(1) case, we find significant differentiation in the values taken by the two criteria depending upon the structure and the degree of autocorrelation. In the case of MA(1), and especially for positive autocorrelation, we always find actual confidence levels lower than the corresponding nominal ones, while this differentiation between these two levels is much lower compared to the case of AR(1).

Suggested Citation

  • Halkos, George & Kevork, Ilias, 2002. "Confidence intervals in stationary autocorrelated time series," MPRA Paper 31840, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:31840
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/31840/1/MPRA_paper_31840.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Daesu & Willemain, Thomas R., 1999. "The threshold bootstrap and threshold jackknife," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 187-202, August.
    2. Song, Wheyming Tina, 1996. "On the estimation of optimal batch sizes in the analysis of simulation output," European Journal of Operational Research, Elsevier, vol. 88(2), pages 304-319, January.
    3. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    4. Averill M. Law & W. David Kelton, 1982. "Confidence Intervals for Steady-State Simulations II: A Survey of Sequential Procedures," Management Science, INFORMS, vol. 28(5), pages 550-562, May.
    5. Michael A. Crane & Donald L. Iglehart, 1975. "Simulating Stable Stochastic Systems, IV: Approximation Techniques," Management Science, INFORMS, vol. 21(11), pages 1215-1224, July.
    6. R. W. Conway, 1963. "Some Tactical Problems in Digital Simulation," Management Science, INFORMS, vol. 10(1), pages 47-61, October.
    7. Robert S. Sargent & Keebom Kang & David Goldsman, 1992. "An Investigation of Finite-Sample Behavior of Confidence Interval Estimators," Operations Research, INFORMS, vol. 40(5), pages 898-913, October.
    8. Park, Dae S. & Kim, Yun B. & Shin, Key I. & Willemain, Thomas R., 2001. "Simulation output analysis using the threshold bootstrap," European Journal of Operational Research, Elsevier, vol. 134(1), pages 17-28, October.
    9. N/A, 1984. "Confidence Intervals," National Institute Economic Review, National Institute of Economic and Social Research, vol. 109(1), pages 33-37, August.
    10. George S. Fishman, 1971. "Estimating Sample Size in Computing Simulation Experiments," Management Science, INFORMS, vol. 18(1), pages 21-38, September.
    11. Duket, Steven D. & Pritsker, A.Alan B., 1978. "Examination of simulation output using spectral methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 20(1), pages 53-60.
    12. Averill M. Law & W. David Kelton, 1984. "Confidence Intervals for Steady-State Simulations: I. A Survey of Fixed Sample Size Procedures," Operations Research, INFORMS, vol. 32(6), pages 1221-1239, December.
    13. Wheyming Tina Song & Bruce W. Schmeiser, 1995. "Optimal Mean-Squared-Error Batch Sizes," Management Science, INFORMS, vol. 41(1), pages 110-123, January.
    14. Lee Schruben, 1983. "Confidence Interval Estimation Using Standardized Time Series," Operations Research, INFORMS, vol. 31(6), pages 1090-1108, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George, Halkos & Ilias, Kevork, 2004. "H Ασυμπτωτική Διακύμανση Στην Εκτίμηση Του Στάσιμου Μέσου Υπό Συνθήκες Αυτοσυσχέτισης [Using the asymptotic variance to estimate the stationary mean under autocorrelation]," MPRA Paper 33324, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George & Kevork, Ilias, 2006. "Estimating population means in covariance stationary process," MPRA Paper 31843, University Library of Munich, Germany.
    2. Song, Wheyming Tina, 2019. "The Song rule outperforms optimal-batch-size variance estimators in simulation output analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1072-1082.
    3. Park, Dae S. & Kim, Yun B. & Shin, Key I. & Willemain, Thomas R., 2001. "Simulation output analysis using the threshold bootstrap," European Journal of Operational Research, Elsevier, vol. 134(1), pages 17-28, October.
    4. George, Halkos & Ilias, Kevork, 2004. "H Ασυμπτωτική Διακύμανση Στην Εκτίμηση Του Στάσιμου Μέσου Υπό Συνθήκες Αυτοσυσχέτισης [Using the asymptotic variance to estimate the stationary mean under autocorrelation]," MPRA Paper 33324, University Library of Munich, Germany.
    5. Song, Wheyming Tina & Chih, Mingchang, 2013. "Run length not required: Optimal-mse dynamic batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 229(1), pages 114-123.
    6. Song, Wheyming T. & Chih, Mingchang, 2010. "Extended dynamic partial-overlapping batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 203(3), pages 640-651, June.
    7. Gamze Tokol & David Goldsman & Daniel H. Ockerman & James J. Swain, 1998. "Standardized Time Series Lp-Norm Variance Estimators for Simulations," Management Science, INFORMS, vol. 44(2), pages 234-245, February.
    8. Sheth-Voss, Pieter A. & Willemain, Thomas R. & Haddock, Jorge, 2005. "Estimating the steady-state mean from short transient simulations," European Journal of Operational Research, Elsevier, vol. 162(2), pages 403-417, April.
    9. Song, Wheyming Tina, 1996. "On the estimation of optimal batch sizes in the analysis of simulation output," European Journal of Operational Research, Elsevier, vol. 88(2), pages 304-319, January.
    10. Christos Alexopoulos & David Goldsman & Gamze Tokol, 2001. "Properties of Batched Quadratic-Form Variance Parameter Estimators for Simulations," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 149-156, May.
    11. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Natalie M. Steiger & Gamze Tokol & James R. Wilson, 2007. "Efficient Computation of Overlapping Variance Estimators for Simulation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 314-327, August.
    12. K Hoad & S Robinson & R Davies, 2010. "Automated selection of the number of replications for a discrete-event simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1632-1644, November.
    13. Mingchang Chih, 2019. "An Insight into the Data Structure of the Dynamic Batch Means Algorithm with Binary Tree Code," Mathematics, MDPI, vol. 7(9), pages 1-8, August.
    14. Ockerman, Daniel H. & Goldsman, David, 1999. "Student t-tests and compound tests to detect transients in simulated time series," European Journal of Operational Research, Elsevier, vol. 116(3), pages 681-691, August.
    15. K Hoad & S Robinson & R Davies, 2010. "Automating warm-up length estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1389-1403, September.
    16. David Goldsman & Seong-Hee Kim & William S. Marshall & Barry L. Nelson, 2002. "Ranking and Selection for Steady-State Simulation: Procedures and Perspectives," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 2-19, February.
    17. Christos Alexopoulos & David Goldsman & Anup C. Mokashi & Kai-Wen Tien & James R. Wilson, 2019. "Sequest: A Sequential Procedure for Estimating Quantiles in Steady-State Simulations," Operations Research, INFORMS, vol. 67(4), pages 1162-1183, July.
    18. Tûba Aktaran‐Kalaycı & Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & James R. Wilson, 2007. "Exact expected values of variance estimators for simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 397-410, June.
    19. Seong-Hee Kim & Barry L. Nelson, 2006. "On the Asymptotic Validity of Fully Sequential Selection Procedures for Steady-State Simulation," Operations Research, INFORMS, vol. 54(3), pages 475-488, June.
    20. Morgan, Lucy E. & Barton, Russell R., 2022. "Fourier trajectory analysis for system discrimination," European Journal of Operational Research, Elsevier, vol. 296(1), pages 203-217.

    More about this item

    Keywords

    Covariance stationary time series; Variance of the sample mean; Actual confidence level;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:31840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.