IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i9p791-d262391.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

An Insight into the Data Structure of the Dynamic Batch Means Algorithm with Binary Tree Code

Author

Listed:
  • Mingchang Chih

    (Department of Business Administration, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan)

Abstract

Batching is a well-known method used to estimate the variance of the sample mean in steady-state simulation. Dynamic batching is a novel technique employed to implement traditional batch means estimators without the knowledge of the simulation run length a priori. In this study, we reinvestigated the dynamic batch means (DBM) algorithm with binary tree hierarchy and further proposed a binary coding idea to construct the corresponding data structure. We also present a closed-form expression for the DBM estimator with binary tree coding idea. This closed-form expression implies a mathematical expression that clearly defines itself in an algebraic binary relation. Given that the sample size and storage space are known in advance, we can show that the computation complexity in the closed-form expression for obtaining the indexes c j ( k ) , i.e., the batch mean shifts s , is less than the effort in recursive expression.

Suggested Citation

  • Mingchang Chih, 2019. "An Insight into the Data Structure of the Dynamic Batch Means Algorithm with Binary Tree Code," Mathematics, MDPI, vol. 7(9), pages 1-8, August.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:791-:d:262391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/9/791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/9/791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. W. Conway, 1963. "Some Tactical Problems in Digital Simulation," Management Science, INFORMS, vol. 10(1), pages 47-61, October.
    2. Tûba Aktaran‐Kalaycı & Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & James R. Wilson, 2007. "Exact expected values of variance estimators for simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 397-410, June.
    3. George S. Fishman, 1978. "Grouping Observations in Digital Simulation," Management Science, INFORMS, vol. 24(5), pages 510-521, January.
    4. Song, Wheyming Tina, 2019. "The Song rule outperforms optimal-batch-size variance estimators in simulation output analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1072-1082.
    5. Song, Wheyming Tina & Chih, Mingchang, 2013. "Run length not required: Optimal-mse dynamic batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 229(1), pages 114-123.
    6. Wheyming Tina Song & Bruce W. Schmeiser, 1995. "Optimal Mean-Squared-Error Batch Sizes," Management Science, INFORMS, vol. 41(1), pages 110-123, January.
    7. Song, Wheyming T. & Chih, Mingchang, 2010. "Extended dynamic partial-overlapping batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 203(3), pages 640-651, June.
    8. Dootika Vats & James M Flegal & Galin L Jones, 2019. "Multivariate output analysis for Markov chain Monte Carlo," Biometrika, Biometrika Trust, vol. 106(2), pages 321-337.
    9. Bruce Schmeiser, 1982. "Batch Size Effects in the Analysis of Simulation Output," Operations Research, INFORMS, vol. 30(3), pages 556-568, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Wheyming Tina & Chih, Mingchang, 2013. "Run length not required: Optimal-mse dynamic batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 229(1), pages 114-123.
    2. Song, Wheyming Tina, 2019. "The Song rule outperforms optimal-batch-size variance estimators in simulation output analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1072-1082.
    3. Song, Wheyming T. & Chih, Mingchang, 2010. "Extended dynamic partial-overlapping batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 203(3), pages 640-651, June.
    4. Enver Yücesan, 1993. "Randomization tests for initialization bias in simulation output," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(5), pages 643-663, August.
    5. Song, Wheyming Tina, 1996. "On the estimation of optimal batch sizes in the analysis of simulation output," European Journal of Operational Research, Elsevier, vol. 88(2), pages 304-319, January.
    6. Natalie M. Steiger & James R. Wilson, 2001. "Convergence Properties of the Batch Means Method for Simulation Output Analysis," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 277-293, November.
    7. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Gamze Tokol & James R. Wilson, 2007. "Overlapping Variance Estimators for Simulation," Operations Research, INFORMS, vol. 55(6), pages 1090-1103, December.
    8. Christos Alexopoulos & David Goldsman & Gamze Tokol, 2001. "Properties of Batched Quadratic-Form Variance Parameter Estimators for Simulations," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 149-156, May.
    9. Ying Liu & Dootika Vats & James M. Flegal, 2022. "Batch Size Selection for Variance Estimators in MCMC," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 65-93, March.
    10. Srinagesh Gavirneni & Douglas J. Morrice & Peter Mullarkey, 2004. "Simulation Helps Maxager Shorten Its Sales Cycle," Interfaces, INFORMS, vol. 34(2), pages 87-96, April.
    11. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Natalie M. Steiger & Gamze Tokol & James R. Wilson, 2007. "Efficient Computation of Overlapping Variance Estimators for Simulation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 314-327, August.
    12. Robinson, Stewart, 2007. "A statistical process control approach to selecting a warm-up period for a discrete-event simulation," European Journal of Operational Research, Elsevier, vol. 176(1), pages 332-346, January.
    13. Kin Wai Chan & Chun Yip Yau, 2017. "High-order Corrected Estimator of Asymptotic Variance with Optimal Bandwidth," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 866-898, December.
    14. Halkos, George & Kevork, Ilias, 2002. "Confidence intervals in stationary autocorrelated time series," MPRA Paper 31840, University Library of Munich, Germany.
    15. Natalie M. Steiger & James R. Wilson, 2002. "An Improved Batch Means Procedure for Simulation Output Analysis," Management Science, INFORMS, vol. 48(12), pages 1569-1586, December.
    16. Barry L. Nelson, 2004. "50th Anniversary Article: Stochastic Simulation Research in Management Science," Management Science, INFORMS, vol. 50(7), pages 855-868, July.
    17. Halkos, George & Kevork, Ilias, 2006. "Estimating population means in covariance stationary process," MPRA Paper 31843, University Library of Munich, Germany.
    18. John R. Birge, 2023. "Uses of Sub-sample Estimates to Reduce Errors in Stochastic Optimization Models," Papers 2310.07052, arXiv.org.
    19. Nilay Tanık Argon & Sigrún Andradóttir & Christos Alexopoulos & David Goldsman, 2013. "Steady-State Simulation with Replication-Dependent Initial Transients: Analysis and Examples," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 177-191, February.
    20. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:791-:d:262391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.