IDEAS home Printed from
   My bibliography  Save this paper

The empirical saddlepoint likelihood estimator applied to two-step GMM


  • Sowell, Fallaw


The empirical saddlepoint likelihood (ESPL) estimator is introduced. The ESPL provides improvement over one-step GMM estimators by including additional terms to automatically reduce higher order bias. The first order sampling properties are shown to be equivalent to efficient two-step GMM. New tests are introduced for hypothesis on the model's parameters. The higher order bias is calculated and situations of practical interest are noted where this bias will be smaller than for currently available estimators. As an application, the ESPL is used to investigate an overidentified moment model. It is shown how the model's parameters can be estimated with both the ESPL and a conditional ESPL (CESPL), conditional on the overidentifying restrictions being satisfied. This application leads to several new tests for overidentifying restrictions. Simulations demonstrate that ESPL and CESPL have smaller bias than currently available one-step GMM estimators. The simulations also show new tests for overidentifying restrictions that have performance comparable to or better than currently available tests. The computations needed to calculate the ESPL estimator are comparable to those needed for a one-step GMM estimator.

Suggested Citation

  • Sowell, Fallaw, 2009. "The empirical saddlepoint likelihood estimator applied to two-step GMM," MPRA Paper 15494, University Library of Munich, Germany, revised May 2009.
  • Handle: RePEc:pra:mprapa:15494

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    File URL:
    File Function: revised version
    Download Restriction: no

    References listed on IDEAS

    1. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    2. Gregory, Allan W. & Lamarche, Jean-Francois & Smith, Gregor W., 2002. "Information-theoretic estimation of preference parameters: macroeconomic applications and simulation evidence," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 213-233, March.
    3. Sowell, Fallaw, 1996. "Optimal Tests for Parameter Instability in the Generalized Method of Moments Framework," Econometrica, Econometric Society, vol. 64(5), pages 1085-1107, September.
    4. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    5. Guido W. Imbens, 1997. "One-Step Estimators for Over-Identified Generalized Method of Moments Models," Review of Economic Studies, Oxford University Press, vol. 64(3), pages 359-383.
    6. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    7. Sowell, Fallaw, 2006. "The Empirical Saddlepoint Approximation for GMM Estimators," MPRA Paper 3356, University Library of Munich, Germany, revised May 2007.
    8. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    9. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874,
    10. Hall, Alastair R., 2004. "Generalized Method of Moments," OUP Catalogue, Oxford University Press, number 9780198775201.
    11. Jens Jensen & Andrew Wood, 1998. "Large Deviation and Other Results for Minimum Contrast Estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 673-695, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lรด, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.

    More about this item


    Generalized method of moments estimator; test of overidentifying restrictions; sampling distribution; empirical saddlepoint approximation; asymptotic distribution; higher order bias;

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15494. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.