IDEAS home Printed from https://ideas.repec.org/p/nwu/cmsems/268.html
   My bibliography  Save this paper

Optimal Pricing of Computer Resources in a Competitive Environment

Author

Listed:
  • V. Balachandran
  • Edward A. Stohr

Abstract

No abstract is available for this item.

Suggested Citation

  • V. Balachandran & Edward A. Stohr, 1978. "Optimal Pricing of Computer Resources in a Competitive Environment," Discussion Papers 268, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:268
    as

    Download full text from publisher

    File URL: http://www.kellogg.northwestern.edu/research/math/papers/268.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerome Bracken & James T. McGill, 1973. "Mathematical Programs with Optimization Problems in the Constraints," Operations Research, INFORMS, vol. 21(1), pages 37-44, February.
    2. Seymour Smidt, 1968. "Flexible Pricing of Computer Services," Management Science, INFORMS, vol. 14(10), pages 581-600, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward A. Stohr, 1979. "A Mathematical Programming Generator System in APL," Discussion Papers 348, Northwestern University, Center for Mathematical Studies in Economics and Management Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    2. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    3. Yanikoglu, I., 2014. "Robust optimization methods for chance constrained, simulation-based, and bilevel problems," Other publications TiSEM 45826f7e-6e21-481e-889e-4, Tilburg University, School of Economics and Management.
    4. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    5. Changhong Deng & Ning Liang & Jin Tan & Gongchen Wang, 2016. "Multi-Objective Scheduling of Electric Vehicles in Smart Distribution Network," Sustainability, MDPI, vol. 8(12), pages 1-15, November.
    6. Shuang Ma & Gang Du & Jianxin (Roger) Jiao & Ruchuan Zhang, 2016. "Hierarchical game joint optimization for product family-driven modular design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1496-1509, December.
    7. Lu Gan & Dirong Xu & Xiuyun Chen & Pengyan Jiang & Benjamin Lev & Zongmin Li, 2023. "Sustainable portfolio re-equilibrium on wind-solar-hydro system: An integrated optimization with combined meta-heuristic," Energy & Environment, , vol. 34(5), pages 1383-1408, August.
    8. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    9. Karabulut, Ezgi & Aras, Necati & Kuban Altınel, İ., 2017. "Optimal sensor deployment to increase the security of the maximal breach path in border surveillance," European Journal of Operational Research, Elsevier, vol. 259(1), pages 19-36.
    10. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    11. Jacquillat, Alexandre & Vaze, Vikrant & Wang, Weilong, 2022. "Primary versus secondary infrastructure capacity allocation mechanisms," European Journal of Operational Research, Elsevier, vol. 303(2), pages 668-687.
    12. Gabriel Lopez Zenarosa & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2021. "On exact solution approaches for bilevel quadratic 0–1 knapsack problem," Annals of Operations Research, Springer, vol. 298(1), pages 555-572, March.
    13. Christine Tawfik & Sabine Limbourg, 2019. "A Bilevel Model for Network Design and Pricing Based on a Level-of-Service Assessment," Transportation Science, INFORMS, vol. 53(6), pages 1609-1626, November.
    14. Chenlu Miao & Gang Du & Roger J. Jiao & Tiebin Zhang, 2017. "Coordinated optimisation of platform-driven product line planning by bilevel programming," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3808-3831, July.
    15. Ross, Jeanne W. & Vitale, Michael R. & Beath, Cynthia Mathis, 1944-, 2003. "The untapped potential of IT chargeback," Working papers no. 300, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    16. Juan Sebastian Roncancio & José Vuelvas & Diego Patino & Carlos Adrián Correa-Flórez, 2022. "Flower Greenhouse Energy Management to Offer Local Flexibility Markets," Energies, MDPI, vol. 15(13), pages 1-20, June.
    17. Guangquan Zhang & Jie Lu, 2010. "Fuzzy bilevel programming with multiple objectives and cooperative multiple followers," Journal of Global Optimization, Springer, vol. 47(3), pages 403-419, July.
    18. Thomas Kleinert & Martine Labbé & Fr¨ank Plein & Martin Schmidt, 2020. "Technical Note—There’s No Free Lunch: On the Hardness of Choosing a Correct Big-M in Bilevel Optimization," Operations Research, INFORMS, vol. 68(6), pages 1716-1721, November.
    19. Ankur Sinha & Zhichao Lu & Kalyanmoy Deb & Pekka Malo, 2020. "Bilevel optimization based on iterative approximation of multiple mappings," Journal of Heuristics, Springer, vol. 26(2), pages 151-185, April.
    20. Syed Aqib Jalil & Shakeel Javaid & Syed Mohd Muneeb, 2018. "A decentralized multi-level decision making model for solid transportation problem with uncertainty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1022-1033, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fran Walker (email available below). General contact details of provider: https://edirc.repec.org/data/cmnwuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.