IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/detrending.html

Using Temporal Detrending to Observe the Spatial Correlation of Traffic

Author

Abstract

This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis—St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models.

Suggested Citation

  • Alireza Ermagun & Snigdhansu Chatterjee & David Levinson, 2017. "Using Temporal Detrending to Observe the Spatial Correlation of Traffic," Working Papers 000161, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:detrending
    DOI: 10.1371/journal.pone.0176853
    as

    Download full text from publisher

    File URL: https://doi.org/10.1371/journal.pone.0176853
    File Function: First version, 2017
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0176853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Ermagun & David Levinson, 2017. "Spatiotemporal Short-term Traffic Forecasting using the Network Weight Matrix and Systematic Detrending," Working Papers 000166, University of Minnesota: Nexus Research Group.
    2. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    3. Alireza Ermagun & David Levinson, 2017. "Traffic Flow Variation and Network Structure," Working Papers 000167, University of Minnesota: Nexus Research Group.
    4. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).
    5. Dongqing Zhang & Zhaoxia Guo, 2019. "On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    6. Alireza Ermagun & David M Levinson, 2019. "Development and application of the network weight matrix to predict traffic flow for congested and uncongested conditions," Environment and Planning B, , vol. 46(9), pages 1684-1705, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:detrending. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.