IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity

This paper examines the effect of recommender systems on the diversity of sales. Two anecdotal views exist about such effects. Some believe recommenders help consumers discover new products and thus increase sales diversity. Others believe recommenders only reinforce the popularity of already popular products. This paper is a first attempt to reconcile these seemingly incompatible views. We explore the question in two ways. First, modeling recommender systems analytically allows us to explore their path dependent effects. Second, turning to simulation, we increase the realism of our results by combining choice models with actual implementations of recommender systems. We arrive at four main results. One, some common recommenders lead to a net reduction in average sales diversity. Because common recommenders (e.g., collaborative filters) recommend products based on sales and ratings, they cannot recommend products with limited historical data, even if they would be rated favorably. In turn, these recommenders can create a rich-get-richer effect for popular products and vice-versa for unpopular ones. This finding is often surprising to consumers who express that recommendations have helped them discover new products. In line with this, result two shows it is possible for individual-level diversity to increase but aggregate diversity to decrease; recommenders can push each person to new products, but they often push us toward the same new products. Result three finds that recommenders intensify the effects of chance events on market outcomes. At the product level, recommenders can ‘create hits' out of products with early, high sales due to chance alone. At the market level, in individual sample paths it is possible to observe more diversity, even though on average diversity often decreases. Four, we show how basic design choices affect the outcome. Thus, managers can choose recommender designs that are more consistent with their sales or product assortment strategies.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by NET Institute in its series Working Papers with number 07-10.

in new window

Length: 43 pages
Date of creation: Sep 2007
Date of revision: Sep 2007
Handle: RePEc:net:wpaper:0710
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:net:wpaper:0710. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicholas Economides)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.