IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Optimal Probabilistic Forecasts for Counts

  • Brendan P.M. McCabe
  • Gael M. Martin


  • David Harris

Optimal probabilistic forecasts of integer-valued random variables are derived. The optimality is achieved by estimating the forecast distribution nonparametrically over a given broad model class and proving asymptotic efficiency in that setting. The ideas are demonstrated within the context of the integer autoregressive class of models, which is a suitable class for any count data that can be interpreted as a queue, stock, birth and death process or branching process. The theoretical proofs of asymptotic optimality are supplemented by simulation results which demonstrate the overall superiority of the nonparametric method relative to a misspecified parametric maximum likelihood estimator, in large but .nite samples. The method is applied to counts of wage claim benefits, stock market iceberg orders and civilian deaths in Iraq, with bootstrap methods used to quantify sampling variation in the estimated forecast distributions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 7/09.

in new window

Length: 41 pages
Date of creation: Aug 2009
Date of revision:
Handle: RePEc:msh:ebswps:2009-7
Contact details of provider: Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61 3 99052489
Fax: +61 3 99055474
Web page:

More information through EDIRC

Order Information: Web: Email:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2009-7. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.