IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Semiparametric estimation of the dependence parameter of the error terms in multivariate regression

Listed author(s):
  • Gunky Kim


  • Mervyn J. Silvapulle


  • Paramsothy Silvapulle


A semiparametric method is developed for estimating the dependence parameter and the joint distribution of the error term in the multivariate linear regression model. The nonparametric part of the method treats the marginal distributions of the error term as unknown, and estimates them by suitable empirical distribution functions. Then a pseudolikelihood is maximized to estimate the dependence parameter. It is shown that this estimator is asymptotically normal, and a consistent estimator of its large sample variance is given. A simulation study shows that the proposed semiparametric estimator is better than the parametric methods available when the error distribution is unknown, which is almost always the case in practice. It turns out that there is no loss of asymptotic efficiency due to the estimation of the regression parameters. An empirical example on portfolio management is used to illustrate the method. This is an extension of earlier work by Oakes (1994) and Genest et al. (1995) for the case when the observations are independent and identically distributed, and Oakes and Ritz (2000) for the multivariate regression model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 1/07.

in new window

Length: 29 pages
Date of creation: Feb 2007
Handle: RePEc:msh:ebswps:2007-1
Contact details of provider: Postal:
PO Box 11E, Monash University, Victoria 3800, Australia

Phone: +61 3 99052489
Fax: +61 3 99055474
Web page:

More information through EDIRC

Order Information: Web: Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Weijing Wang, 2003. "Estimating the association parameter for copula models under dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 257-273.
  2. Karen Bandeen-Roche, 2002. "Modelling multivariate failure time associations in the presence of a competing risk," Biometrika, Biometrika Trust, vol. 89(2), pages 299-314, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2007-1. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.