IDEAS home Printed from https://ideas.repec.org/p/mnh/wpaper/36588.html
   My bibliography  Save this paper

Bootstrapping Sample Quantiles of Discrete Data

Author

Listed:
  • Jentsch, Carsten
  • Leucht, Anne

Abstract

Sample quantiles are consistent estimators for the true quantile and satisfy central limit theorems (CLTs) if the underlying distribution is continuous. If the distribution is discrete, the situation is much more delicate. In this case, sample quantiles are known to be not even consistent in general for the population quantiles. In a motivating example, we show that Efron’s bootstrap does not consistently mimic the distribution of sample quantiles even in the discrete independent and identically distributed (i.i.d.) data case. To overcome this bootstrap inconsistency, we provide two different and complementing strategies. In the first part of this paper, we prove that m-out-of-n-type bootstraps do consistently mimic the distribution of sample quantiles in the discrete data case. As the corresponding bootstrap confidence intervals tend to be conservative due to the discreteness of the true distribution, we propose randomization techniques to construct bootstrap confidence sets of asymptotically correct size. In the second part, we consider a continuous modification of the cumulative distribution function and make use of mid-quantiles studied in Ma, Genton and Parzen (2011). Contrary to ordinary quantiles and due to continuity, mid-quantiles lose their discrete nature and can be estimated consistently. Moreover, Ma, Genton and Parzen (2011) proved (non-)central limit theorems for i.i.d. data, which we generalize to the time series case. However, as the mid-quantile function fails to be differentiable, classical i.i.d. or block bootstrap methods do not lead to completely satisfactory results and m-out-of-n variants are required here as well. The finite sample performances of both approaches are illustrated in a simulation study by comparing coverage rates of bootstrap confidence intervals.

Suggested Citation

  • Jentsch, Carsten & Leucht, Anne, 2014. "Bootstrapping Sample Quantiles of Discrete Data," Working Papers 14-15, University of Mannheim, Department of Economics.
  • Handle: RePEc:mnh:wpaper:36588
    as

    Download full text from publisher

    File URL: https://madoc.bib.uni-mannheim.de/36588/1/Jentsch_und_Leucht_14-15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Leucht, Anne & Neumann, Michael H., 2013. "Dependent wild bootstrap for degenerate U- and V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 257-280.
    3. Doukhan, Paul & Fokianos, Konstantinos & Tjøstheim, Dag, 2012. "On weak dependence conditions for Poisson autoregressions," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 942-948.
    4. Sharipov, Olimjon Sh. & Wendler, Martin, 2013. "Normal limits, nonnormal limits, and the bootstrap for quantiles of dependent data," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1028-1035.
    5. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    6. Drost, F.C. & van den Akker, R. & Werker, B.J.M., 2008. "Efficient Estimation of Autoregression Parameters and Innovation Distributions forSemiparametric Integer-Valued AR(p) Models (Revision of DP 2007-23)," Discussion Paper 2008-53, Tilburg University, Center for Economic Research.
    7. Feike C. Drost & Ramon van den Akker & Bas J. M. Werker, 2009. "Efficient estimation of auto‐regression parameters and innovation distributions for semiparametric integer‐valued AR(p) models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 467-485, April.
    8. Olivier Thas & Jan De Neve & Lieven Clement & Jean-Pierre Ottoy, 2012. "Probabilistic index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 623-671, September.
    9. Yanyuan Ma & Marc Genton & Emanuel Parzen, 2011. "Asymptotic properties of sample quantiles of discrete distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 227-243, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    2. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
    3. Yan Cui & Qi Li & Fukang Zhu, 2020. "Flexible bivariate Poisson integer-valued GARCH model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1449-1477, December.
    4. Youngmi Lee & Sangyeol Lee & Dag Tjøstheim, 2018. "Asymptotic normality and parameter change test for bivariate Poisson INGARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 52-69, March.
    5. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
    6. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    7. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    8. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    9. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    10. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    11. Hanan Elsaied & Roland Fried, 2014. "Robust Fitting Of Inarch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 517-535, November.
    12. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    13. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.
    14. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    15. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    16. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos & Touche, Nassim, 2019. "Integer-valued stochastic volatility," MPRA Paper 91962, University Library of Munich, Germany, revised 04 Feb 2019.
    17. Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.
    18. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    19. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
    20. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.

    More about this item

    Keywords

    Bootstrap inconsistency ; Count processes ; Mid-distribution function ; m-out-of-n bootstrap ; Integer-valued processes;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnh:wpaper:36588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Katharina Rautenberg (email available below). General contact details of provider: https://edirc.repec.org/data/fvmande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.